LCOV - code coverage report
Current view: top level - src - monocypher.c (source / functions) Hit Total Coverage
Test: passgen-test.info Lines: 303 1178 25.7 %
Date: 2024-11-15 06:04:45 Functions: 27 111 24.3 %

          Line data    Source code
       1             : // Monocypher version 4.0.2
       2             : //
       3             : // This file is dual-licensed.  Choose whichever licence you want from
       4             : // the two licences listed below.
       5             : //
       6             : // The first licence is a regular 2-clause BSD licence.  The second licence
       7             : // is the CC-0 from Creative Commons. It is intended to release Monocypher
       8             : // to the public domain.  The BSD licence serves as a fallback option.
       9             : //
      10             : // SPDX-License-Identifier: BSD-2-Clause OR CC0-1.0
      11             : //
      12             : // ------------------------------------------------------------------------
      13             : //
      14             : // Copyright (c) 2017-2020, Loup Vaillant
      15             : // All rights reserved.
      16             : //
      17             : //
      18             : // Redistribution and use in source and binary forms, with or without
      19             : // modification, are permitted provided that the following conditions are
      20             : // met:
      21             : //
      22             : // 1. Redistributions of source code must retain the above copyright
      23             : //    notice, this list of conditions and the following disclaimer.
      24             : //
      25             : // 2. Redistributions in binary form must reproduce the above copyright
      26             : //    notice, this list of conditions and the following disclaimer in the
      27             : //    documentation and/or other materials provided with the
      28             : //    distribution.
      29             : //
      30             : // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
      31             : // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
      32             : // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
      33             : // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
      34             : // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      35             : // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
      36             : // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
      37             : // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
      38             : // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
      39             : // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
      40             : // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
      41             : //
      42             : // ------------------------------------------------------------------------
      43             : //
      44             : // Written in 2017-2020 by Loup Vaillant
      45             : //
      46             : // To the extent possible under law, the author(s) have dedicated all copyright
      47             : // and related neighboring rights to this software to the public domain
      48             : // worldwide.  This software is distributed without any warranty.
      49             : //
      50             : // You should have received a copy of the CC0 Public Domain Dedication along
      51             : // with this software.  If not, see
      52             : // <https://creativecommons.org/publicdomain/zero/1.0/>
      53             : 
      54             : #include "passgen/monocypher.h"
      55             : 
      56             : #ifdef MONOCYPHER_CPP_NAMESPACE
      57             : namespace MONOCYPHER_CPP_NAMESPACE {
      58             : #endif
      59             : 
      60             : /////////////////
      61             : /// Utilities ///
      62             : /////////////////
      63             : #define FOR_T(type, i, start, end) for (type i = (start); i < (end); i++)
      64             : #define FOR(i, start, end)         FOR_T(size_t, i, start, end)
      65             : #define COPY(dst, src, size)       FOR(_i_, 0, size) (dst)[_i_] = (src)[_i_]
      66             : #define ZERO(buf, size)            FOR(_i_, 0, size) (buf)[_i_] = 0
      67             : #define WIPE_CTX(ctx)              passgen_wipe(ctx   , sizeof(*(ctx)))
      68             : #define WIPE_BUFFER(buffer)        passgen_wipe(buffer, sizeof(buffer))
      69             : #define MIN(a, b)                  ((a) <= (b) ? (a) : (b))
      70             : #define MAX(a, b)                  ((a) >= (b) ? (a) : (b))
      71             : 
      72             : typedef int8_t   i8;
      73             : typedef uint8_t  u8;
      74             : typedef int16_t  i16;
      75             : typedef uint32_t u32;
      76             : typedef int32_t  i32;
      77             : typedef int64_t  i64;
      78             : typedef uint64_t u64;
      79             : 
      80             : static const u8 zero[128] = {0};
      81             : 
      82             : // returns the smallest positive integer y such that
      83             : // (x + y) % pow_2  == 0
      84             : // Basically, y is the "gap" missing to align x.
      85             : // Only works when pow_2 is a power of 2.
      86             : // Note: we use ~x+1 instead of -x to avoid compiler warnings
      87          39 : static size_t gap(size_t x, size_t pow_2)
      88             : {
      89          39 :         return (~x + 1) & (pow_2 - 1);
      90             : }
      91             : 
      92           0 : static u32 load24_le(const u8 s[3])
      93             : {
      94             :         return
      95           0 :                 ((u32)s[0] <<  0) |
      96           0 :                 ((u32)s[1] <<  8) |
      97           0 :                 ((u32)s[2] << 16);
      98             : }
      99             : 
     100        1856 : static u32 load32_le(const u8 s[4])
     101             : {
     102             :         return
     103        1856 :                 ((u32)s[0] <<  0) |
     104        1856 :                 ((u32)s[1] <<  8) |
     105        3712 :                 ((u32)s[2] << 16) |
     106        1856 :                 ((u32)s[3] << 24);
     107             : }
     108             : 
     109         879 : static u64 load64_le(const u8 s[8])
     110             : {
     111         879 :         return load32_le(s) | ((u64)load32_le(s+4) << 32);
     112             : }
     113             : 
     114        2841 : static void store32_le(u8 out[4], u32 in)
     115             : {
     116        2841 :         out[0] =  in        & 0xff;
     117        2841 :         out[1] = (in >>  8) & 0xff;
     118        2841 :         out[2] = (in >> 16) & 0xff;
     119        2841 :         out[3] = (in >> 24) & 0xff;
     120        2841 : }
     121             : 
     122         636 : static void store64_le(u8 out[8], u64 in)
     123             : {
     124         636 :         store32_le(out    , (u32)in );
     125         636 :         store32_le(out + 4, in >> 32);
     126         636 : }
     127             : 
     128          21 : static void load32_le_buf (u32 *dst, const u8 *src, size_t size) {
     129         119 :         FOR(i, 0, size) { dst[i] = load32_le(src + i*4); }
     130          21 : }
     131          99 : static void load64_le_buf (u64 *dst, const u8 *src, size_t size) {
     132         978 :         FOR(i, 0, size) { dst[i] = load64_le(src + i*8); }
     133          99 : }
     134           0 : static void store32_le_buf(u8 *dst, const u32 *src, size_t size) {
     135           0 :         FOR(i, 0, size) { store32_le(dst + i*4, src[i]); }
     136           0 : }
     137          65 : static void store64_le_buf(u8 *dst, const u64 *src, size_t size) {
     138         701 :         FOR(i, 0, size) { store64_le(dst + i*8, src[i]); }
     139          65 : }
     140             : 
     141       60416 : static u64 rotr64(u64 x, u64 n) { return (x >> n) ^ (x << (64 - n)); }
     142       31040 : static u32 rotl32(u32 x, u32 n) { return (x << n) ^ (x >> (32 - n)); }
     143             : 
     144           0 : static int neq0(u64 diff)
     145             : {
     146             :         // constant time comparison to zero
     147             :         // return diff != 0 ? -1 : 0
     148           0 :         u64 half = (diff >> 32) | ((u32)diff);
     149           0 :         return (1 & ((half - 1) >> 32)) - 1;
     150             : }
     151             : 
     152           0 : static u64 x16(const u8 a[16], const u8 b[16])
     153             : {
     154           0 :         return (load64_le(a + 0) ^ load64_le(b + 0))
     155           0 :                 |  (load64_le(a + 8) ^ load64_le(b + 8));
     156             : }
     157           0 : static u64 x32(const u8 a[32],const u8 b[32]){return x16(a,b)| x16(a+16, b+16);}
     158           0 : static u64 x64(const u8 a[64],const u8 b[64]){return x32(a,b)| x32(a+32, b+32);}
     159           0 : int passgen_verify16(const u8 a[16], const u8 b[16]){ return neq0(x16(a, b)); }
     160           0 : int passgen_verify32(const u8 a[32], const u8 b[32]){ return neq0(x32(a, b)); }
     161           0 : int passgen_verify64(const u8 a[64], const u8 b[64]){ return neq0(x64(a, b)); }
     162             : 
     163      428642 : void passgen_wipe(void *secret, size_t size)
     164             : {
     165      428642 :         volatile u8 *v_secret = (u8*)secret;
     166    15806718 :         ZERO(v_secret, size);
     167      428642 : }
     168             : 
     169             : /////////////////
     170             : /// Chacha 20 ///
     171             : /////////////////
     172             : #define QUARTERROUND(a, b, c, d)        \
     173             :         a += b;  d = rotl32(d ^ a, 16); \
     174             :         c += d;  b = rotl32(b ^ c, 12); \
     175             :         a += b;  d = rotl32(d ^ a,  8); \
     176             :         c += d;  b = rotl32(b ^ c,  7)
     177             : 
     178          97 : static void chacha20_rounds(u32 out[16], const u32 in[16])
     179             : {
     180             :         // The temporary variables make Chacha20 10% faster.
     181          97 :         u32 t0  = in[ 0];  u32 t1  = in[ 1];  u32 t2  = in[ 2];  u32 t3  = in[ 3];
     182          97 :         u32 t4  = in[ 4];  u32 t5  = in[ 5];  u32 t6  = in[ 6];  u32 t7  = in[ 7];
     183          97 :         u32 t8  = in[ 8];  u32 t9  = in[ 9];  u32 t10 = in[10];  u32 t11 = in[11];
     184          97 :         u32 t12 = in[12];  u32 t13 = in[13];  u32 t14 = in[14];  u32 t15 = in[15];
     185             : 
     186        1067 :         FOR (i, 0, 10) { // 20 rounds, 2 rounds per loop.
     187         970 :                 QUARTERROUND(t0, t4, t8 , t12); // column 0
     188         970 :                 QUARTERROUND(t1, t5, t9 , t13); // column 1
     189         970 :                 QUARTERROUND(t2, t6, t10, t14); // column 2
     190         970 :                 QUARTERROUND(t3, t7, t11, t15); // column 3
     191         970 :                 QUARTERROUND(t0, t5, t10, t15); // diagonal 0
     192         970 :                 QUARTERROUND(t1, t6, t11, t12); // diagonal 1
     193         970 :                 QUARTERROUND(t2, t7, t8 , t13); // diagonal 2
     194         970 :                 QUARTERROUND(t3, t4, t9 , t14); // diagonal 3
     195             :         }
     196          97 :         out[ 0] = t0;   out[ 1] = t1;   out[ 2] = t2;   out[ 3] = t3;
     197          97 :         out[ 4] = t4;   out[ 5] = t5;   out[ 6] = t6;   out[ 7] = t7;
     198          97 :         out[ 8] = t8;   out[ 9] = t9;   out[10] = t10;  out[11] = t11;
     199          97 :         out[12] = t12;  out[13] = t13;  out[14] = t14;  out[15] = t15;
     200          97 : }
     201             : 
     202             : static const u8 *chacha20_constant = (const u8*)"expand 32-byte k"; // 16 bytes
     203             : 
     204           0 : void passgen_chacha20_h(u8 out[32], const u8 key[32], const u8 in [16])
     205             : {
     206             :         u32 block[16];
     207           0 :         load32_le_buf(block     , chacha20_constant, 4);
     208           0 :         load32_le_buf(block +  4, key              , 8);
     209           0 :         load32_le_buf(block + 12, in               , 4);
     210             : 
     211           0 :         chacha20_rounds(block, block);
     212             : 
     213             :         // prevent reversal of the rounds by revealing only half of the buffer.
     214           0 :         store32_le_buf(out   , block   , 4); // constant
     215           0 :         store32_le_buf(out+16, block+12, 4); // counter and nonce
     216           0 :         WIPE_BUFFER(block);
     217           0 : }
     218             : 
     219           7 : u64 passgen_chacha20_djb(u8 *cipher_text, const u8 *plain_text,
     220             :                         size_t text_size, const u8 key[32], const u8 nonce[8],
     221             :                         u64 ctr)
     222             : {
     223             :         u32 input[16];
     224           7 :         load32_le_buf(input     , chacha20_constant, 4);
     225           7 :         load32_le_buf(input +  4, key              , 8);
     226           7 :         load32_le_buf(input + 14, nonce            , 2);
     227           7 :         input[12] = (u32) ctr;
     228           7 :         input[13] = (u32)(ctr >> 32);
     229             : 
     230             :         // Whole blocks
     231             :         u32    pool[16];
     232           7 :         size_t nb_blocks = text_size >> 6;
     233         103 :         FOR (i, 0, nb_blocks) {
     234          96 :                 chacha20_rounds(pool, input);
     235          96 :                 if (plain_text != 0) {
     236           0 :                         FOR (j, 0, 16) {
     237           0 :                                 u32 p = pool[j] + input[j];
     238           0 :                                 store32_le(cipher_text, p ^ load32_le(plain_text));
     239           0 :                                 cipher_text += 4;
     240           0 :                                 plain_text  += 4;
     241             :                         }
     242             :                 } else {
     243        1632 :                         FOR (j, 0, 16) {
     244        1536 :                                 u32 p = pool[j] + input[j];
     245        1536 :                                 store32_le(cipher_text, p);
     246        1536 :                                 cipher_text += 4;
     247             :                         }
     248             :                 }
     249          96 :                 input[12]++;
     250          96 :                 if (input[12] == 0) {
     251           0 :                         input[13]++;
     252             :                 }
     253             :         }
     254           7 :         text_size &= 63;
     255             : 
     256             :         // Last (incomplete) block
     257           7 :         if (text_size > 0) {
     258           1 :                 if (plain_text == 0) {
     259           1 :                         plain_text = zero;
     260             :                 }
     261           1 :                 chacha20_rounds(pool, input);
     262             :                 u8 tmp[64];
     263          17 :                 FOR (i, 0, 16) {
     264          16 :                         store32_le(tmp + i*4, pool[i] + input[i]);
     265             :                 }
     266           8 :                 FOR (i, 0, text_size) {
     267           7 :                         cipher_text[i] = tmp[i] ^ plain_text[i];
     268             :                 }
     269           1 :                 WIPE_BUFFER(tmp);
     270             :         }
     271           7 :         ctr = input[12] + ((u64)input[13] << 32) + (text_size > 0);
     272             : 
     273           7 :         WIPE_BUFFER(pool);
     274           7 :         WIPE_BUFFER(input);
     275           7 :         return ctr;
     276             : }
     277             : 
     278           0 : u32 passgen_chacha20_ietf(u8 *cipher_text, const u8 *plain_text,
     279             :                          size_t text_size,
     280             :                          const u8 key[32], const u8 nonce[12], u32 ctr)
     281             : {
     282           0 :         u64 big_ctr = ctr + ((u64)load32_le(nonce) << 32);
     283           0 :         return (u32)passgen_chacha20_djb(cipher_text, plain_text, text_size,
     284           0 :                                         key, nonce + 4, big_ctr);
     285             : }
     286             : 
     287           0 : u64 passgen_chacha20_x(u8 *cipher_text, const u8 *plain_text,
     288             :                       size_t text_size,
     289             :                       const u8 key[32], const u8 nonce[24], u64 ctr)
     290             : {
     291             :         u8 sub_key[32];
     292           0 :         passgen_chacha20_h(sub_key, key, nonce);
     293           0 :         ctr = passgen_chacha20_djb(cipher_text, plain_text, text_size,
     294           0 :                                   sub_key, nonce + 16, ctr);
     295           0 :         WIPE_BUFFER(sub_key);
     296           0 :         return ctr;
     297             : }
     298             : 
     299             : /////////////////
     300             : /// Poly 1305 ///
     301             : /////////////////
     302             : 
     303             : // h = (h + c) * r
     304             : // preconditions:
     305             : //   ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff
     306             : //   ctx->r <=   0ffffffc_0ffffffc_0ffffffc_0fffffff
     307             : //   end    <= 1
     308             : // Postcondition:
     309             : //   ctx->h <= 4_ffffffff_ffffffff_ffffffff_ffffffff
     310           0 : static void poly_blocks(passgen_poly1305_ctx *ctx, const u8 *in,
     311             :                         size_t nb_blocks, unsigned end)
     312             : {
     313             :         // Local all the things!
     314           0 :         const u32 r0 = ctx->r[0];
     315           0 :         const u32 r1 = ctx->r[1];
     316           0 :         const u32 r2 = ctx->r[2];
     317           0 :         const u32 r3 = ctx->r[3];
     318           0 :         const u32 rr0 = (r0 >> 2) * 5;  // lose 2 bits...
     319           0 :         const u32 rr1 = (r1 >> 2) + r1; // rr1 == (r1 >> 2) * 5
     320           0 :         const u32 rr2 = (r2 >> 2) + r2; // rr1 == (r2 >> 2) * 5
     321           0 :         const u32 rr3 = (r3 >> 2) + r3; // rr1 == (r3 >> 2) * 5
     322           0 :         const u32 rr4 = r0 & 3;         // ...recover 2 bits
     323           0 :         u32 h0 = ctx->h[0];
     324           0 :         u32 h1 = ctx->h[1];
     325           0 :         u32 h2 = ctx->h[2];
     326           0 :         u32 h3 = ctx->h[3];
     327           0 :         u32 h4 = ctx->h[4];
     328             : 
     329           0 :         FOR (i, 0, nb_blocks) {
     330             :                 // h + c, without carry propagation
     331           0 :                 const u64 s0 = (u64)h0 + load32_le(in);  in += 4;
     332           0 :                 const u64 s1 = (u64)h1 + load32_le(in);  in += 4;
     333           0 :                 const u64 s2 = (u64)h2 + load32_le(in);  in += 4;
     334           0 :                 const u64 s3 = (u64)h3 + load32_le(in);  in += 4;
     335           0 :                 const u32 s4 =      h4 + end;
     336             : 
     337             :                 // (h + c) * r, without carry propagation
     338           0 :                 const u64 x0 = s0*r0+ s1*rr3+ s2*rr2+ s3*rr1+ s4*rr0;
     339           0 :                 const u64 x1 = s0*r1+ s1*r0 + s2*rr3+ s3*rr2+ s4*rr1;
     340           0 :                 const u64 x2 = s0*r2+ s1*r1 + s2*r0 + s3*rr3+ s4*rr2;
     341           0 :                 const u64 x3 = s0*r3+ s1*r2 + s2*r1 + s3*r0 + s4*rr3;
     342           0 :                 const u32 x4 =                                s4*rr4;
     343             : 
     344             :                 // partial reduction modulo 2^130 - 5
     345           0 :                 const u32 u5 = x4 + (x3 >> 32); // u5 <= 7ffffff5
     346           0 :                 const u64 u0 = (u5 >>  2) * 5 + (x0 & 0xffffffff);
     347           0 :                 const u64 u1 = (u0 >> 32)     + (x1 & 0xffffffff) + (x0 >> 32);
     348           0 :                 const u64 u2 = (u1 >> 32)     + (x2 & 0xffffffff) + (x1 >> 32);
     349           0 :                 const u64 u3 = (u2 >> 32)     + (x3 & 0xffffffff) + (x2 >> 32);
     350           0 :                 const u32 u4 = (u3 >> 32)     + (u5 & 3); // u4 <= 4
     351             : 
     352             :                 // Update the hash
     353           0 :                 h0 = u0 & 0xffffffff;
     354           0 :                 h1 = u1 & 0xffffffff;
     355           0 :                 h2 = u2 & 0xffffffff;
     356           0 :                 h3 = u3 & 0xffffffff;
     357           0 :                 h4 = u4;
     358             :         }
     359           0 :         ctx->h[0] = h0;
     360           0 :         ctx->h[1] = h1;
     361           0 :         ctx->h[2] = h2;
     362           0 :         ctx->h[3] = h3;
     363           0 :         ctx->h[4] = h4;
     364           0 : }
     365             : 
     366           0 : void passgen_poly1305_init(passgen_poly1305_ctx *ctx, const u8 key[32])
     367             : {
     368           0 :         ZERO(ctx->h, 5); // Initial hash is zero
     369           0 :         ctx->c_idx = 0;
     370             :         // load r and pad (r has some of its bits cleared)
     371           0 :         load32_le_buf(ctx->r  , key   , 4);
     372           0 :         load32_le_buf(ctx->pad, key+16, 4);
     373           0 :         FOR (i, 0, 1) { ctx->r[i] &= 0x0fffffff; }
     374           0 :         FOR (i, 1, 4) { ctx->r[i] &= 0x0ffffffc; }
     375           0 : }
     376             : 
     377           0 : void passgen_poly1305_update(passgen_poly1305_ctx *ctx,
     378             :                             const u8 *message, size_t message_size)
     379             : {
     380             :         // Avoid undefined NULL pointer increments with empty messages
     381           0 :         if (message_size == 0) {
     382           0 :                 return;
     383             :         }
     384             : 
     385             :         // Align ourselves with block boundaries
     386           0 :         size_t aligned = MIN(gap(ctx->c_idx, 16), message_size);
     387           0 :         FOR (i, 0, aligned) {
     388           0 :                 ctx->c[ctx->c_idx] = *message;
     389           0 :                 ctx->c_idx++;
     390           0 :                 message++;
     391           0 :                 message_size--;
     392             :         }
     393             : 
     394             :         // If block is complete, process it
     395           0 :         if (ctx->c_idx == 16) {
     396           0 :                 poly_blocks(ctx, ctx->c, 1, 1);
     397           0 :                 ctx->c_idx = 0;
     398             :         }
     399             : 
     400             :         // Process the message block by block
     401           0 :         size_t nb_blocks = message_size >> 4;
     402           0 :         poly_blocks(ctx, message, nb_blocks, 1);
     403           0 :         message      += nb_blocks << 4;
     404           0 :         message_size &= 15;
     405             : 
     406             :         // remaining bytes (we never complete a block here)
     407           0 :         FOR (i, 0, message_size) {
     408           0 :                 ctx->c[ctx->c_idx] = message[i];
     409           0 :                 ctx->c_idx++;
     410             :         }
     411             : }
     412             : 
     413           0 : void passgen_poly1305_final(passgen_poly1305_ctx *ctx, u8 mac[16])
     414             : {
     415             :         // Process the last block (if any)
     416             :         // We move the final 1 according to remaining input length
     417             :         // (this will add less than 2^130 to the last input block)
     418           0 :         if (ctx->c_idx != 0) {
     419           0 :                 ZERO(ctx->c + ctx->c_idx, 16 - ctx->c_idx);
     420           0 :                 ctx->c[ctx->c_idx] = 1;
     421           0 :                 poly_blocks(ctx, ctx->c, 1, 0);
     422             :         }
     423             : 
     424             :         // check if we should subtract 2^130-5 by performing the
     425             :         // corresponding carry propagation.
     426           0 :         u64 c = 5;
     427           0 :         FOR (i, 0, 4) {
     428           0 :                 c  += ctx->h[i];
     429           0 :                 c >>= 32;
     430             :         }
     431           0 :         c += ctx->h[4];
     432           0 :         c  = (c >> 2) * 5; // shift the carry back to the beginning
     433             :         // c now indicates how many times we should subtract 2^130-5 (0 or 1)
     434           0 :         FOR (i, 0, 4) {
     435           0 :                 c += (u64)ctx->h[i] + ctx->pad[i];
     436           0 :                 store32_le(mac + i*4, (u32)c);
     437           0 :                 c = c >> 32;
     438             :         }
     439           0 :         WIPE_CTX(ctx);
     440           0 : }
     441             : 
     442           0 : void passgen_poly1305(u8     mac[16],  const u8 *message,
     443             :                      size_t message_size, const u8  key[32])
     444             : {
     445             :         passgen_poly1305_ctx ctx;
     446           0 :         passgen_poly1305_init  (&ctx, key);
     447           0 :         passgen_poly1305_update(&ctx, message, message_size);
     448           0 :         passgen_poly1305_final (&ctx, mac);
     449           0 : }
     450             : 
     451             : ////////////////
     452             : /// BLAKE2 b ///
     453             : ////////////////
     454             : static const u64 iv[8] = {
     455             :         0x6a09e667f3bcc908, 0xbb67ae8584caa73b,
     456             :         0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1,
     457             :         0x510e527fade682d1, 0x9b05688c2b3e6c1f,
     458             :         0x1f83d9abfb41bd6b, 0x5be0cd19137e2179,
     459             : };
     460             : 
     461          72 : static void blake2b_compress(passgen_blake2b_ctx *ctx, int is_last_block)
     462             : {
     463             :         static const u8 sigma[12][16] = {
     464             :                 {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 },
     465             :                 { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 },
     466             :                 { 11,  8, 12,  0,  5,  2, 15, 13, 10, 14,  3,  6,  7,  1,  9,  4 },
     467             :                 {  7,  9,  3,  1, 13, 12, 11, 14,  2,  6,  5, 10,  4,  0, 15,  8 },
     468             :                 {  9,  0,  5,  7,  2,  4, 10, 15, 14,  1, 11, 12,  6,  8,  3, 13 },
     469             :                 {  2, 12,  6, 10,  0, 11,  8,  3,  4, 13,  7,  5, 15, 14,  1,  9 },
     470             :                 { 12,  5,  1, 15, 14, 13,  4, 10,  0,  7,  6,  3,  9,  2,  8, 11 },
     471             :                 { 13, 11,  7, 14, 12,  1,  3,  9,  5,  0, 15,  4,  8,  6,  2, 10 },
     472             :                 {  6, 15, 14,  9, 11,  3,  0,  8, 12,  2, 13,  7,  1,  4, 10,  5 },
     473             :                 { 10,  2,  8,  4,  7,  6,  1,  5, 15, 11,  9, 14,  3, 12, 13,  0 },
     474             :                 {  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15 },
     475             :                 { 14, 10,  4,  8,  9, 15, 13,  6,  1, 12,  0,  2, 11,  7,  5,  3 },
     476             :         };
     477             : 
     478             :         // increment input offset
     479          72 :         u64   *x = ctx->input_offset;
     480          72 :         size_t y = ctx->input_idx;
     481          72 :         x[0] += y;
     482          72 :         if (x[0] < y) {
     483           0 :                 x[1]++;
     484             :         }
     485             : 
     486             :         // init work vector
     487          72 :         u64 v0 = ctx->hash[0];  u64 v8  = iv[0];
     488          72 :         u64 v1 = ctx->hash[1];  u64 v9  = iv[1];
     489          72 :         u64 v2 = ctx->hash[2];  u64 v10 = iv[2];
     490          72 :         u64 v3 = ctx->hash[3];  u64 v11 = iv[3];
     491          72 :         u64 v4 = ctx->hash[4];  u64 v12 = iv[4] ^ ctx->input_offset[0];
     492          72 :         u64 v5 = ctx->hash[5];  u64 v13 = iv[5] ^ ctx->input_offset[1];
     493          72 :         u64 v6 = ctx->hash[6];  u64 v14 = iv[6] ^ (u64)~(is_last_block - 1);
     494          72 :         u64 v7 = ctx->hash[7];  u64 v15 = iv[7];
     495             : 
     496             :         // mangle work vector
     497          72 :         u64 *input = ctx->input;
     498             : #define BLAKE2_G(a, b, c, d, x, y)      \
     499             :         a += b + x;  d = rotr64(d ^ a, 32); \
     500             :         c += d;      b = rotr64(b ^ c, 24); \
     501             :         a += b + y;  d = rotr64(d ^ a, 16); \
     502             :         c += d;      b = rotr64(b ^ c, 63)
     503             : #define BLAKE2_ROUND(i) \
     504             :         BLAKE2_G(v0, v4, v8 , v12, input[sigma[i][ 0]], input[sigma[i][ 1]]); \
     505             :         BLAKE2_G(v1, v5, v9 , v13, input[sigma[i][ 2]], input[sigma[i][ 3]]); \
     506             :         BLAKE2_G(v2, v6, v10, v14, input[sigma[i][ 4]], input[sigma[i][ 5]]); \
     507             :         BLAKE2_G(v3, v7, v11, v15, input[sigma[i][ 6]], input[sigma[i][ 7]]); \
     508             :         BLAKE2_G(v0, v5, v10, v15, input[sigma[i][ 8]], input[sigma[i][ 9]]); \
     509             :         BLAKE2_G(v1, v6, v11, v12, input[sigma[i][10]], input[sigma[i][11]]); \
     510             :         BLAKE2_G(v2, v7, v8 , v13, input[sigma[i][12]], input[sigma[i][13]]); \
     511             :         BLAKE2_G(v3, v4, v9 , v14, input[sigma[i][14]], input[sigma[i][15]])
     512             : 
     513             : #ifdef BLAKE2_NO_UNROLLING
     514             :         FOR (i, 0, 12) {
     515             :                 BLAKE2_ROUND(i);
     516             :         }
     517             : #else
     518          72 :         BLAKE2_ROUND(0);  BLAKE2_ROUND(1);  BLAKE2_ROUND(2);  BLAKE2_ROUND(3);
     519          72 :         BLAKE2_ROUND(4);  BLAKE2_ROUND(5);  BLAKE2_ROUND(6);  BLAKE2_ROUND(7);
     520          72 :         BLAKE2_ROUND(8);  BLAKE2_ROUND(9);  BLAKE2_ROUND(10); BLAKE2_ROUND(11);
     521             : #endif
     522             : 
     523             :         // update hash
     524          72 :         ctx->hash[0] ^= v0 ^ v8;   ctx->hash[1] ^= v1 ^ v9;
     525          72 :         ctx->hash[2] ^= v2 ^ v10;  ctx->hash[3] ^= v3 ^ v11;
     526          72 :         ctx->hash[4] ^= v4 ^ v12;  ctx->hash[5] ^= v5 ^ v13;
     527          72 :         ctx->hash[6] ^= v6 ^ v14;  ctx->hash[7] ^= v7 ^ v15;
     528          72 : }
     529             : 
     530          64 : void passgen_blake2b_keyed_init(passgen_blake2b_ctx *ctx, size_t hash_size,
     531             :                                const u8 *key, size_t key_size)
     532             : {
     533             :         // initial hash
     534         576 :         COPY(ctx->hash, iv, 8);
     535          64 :         ctx->hash[0] ^= 0x01010000 ^ (key_size << 8) ^ hash_size;
     536             : 
     537          64 :         ctx->input_offset[0] = 0;  // beginning of the input, no offset
     538          64 :         ctx->input_offset[1] = 0;  // beginning of the input, no offset
     539          64 :         ctx->hash_size       = hash_size;
     540          64 :         ctx->input_idx       = 0;
     541        1088 :         ZERO(ctx->input, 16);
     542             : 
     543             :         // if there is a key, the first block is that key (padded with zeroes)
     544          64 :         if (key_size > 0) {
     545           0 :                 u8 key_block[128] = {0};
     546           0 :                 COPY(key_block, key, key_size);
     547             :                 // same as calling passgen_blake2b_update(ctx, key_block , 128)
     548           0 :                 load64_le_buf(ctx->input, key_block, 16);
     549           0 :                 ctx->input_idx = 128;
     550             :         }
     551          64 : }
     552             : 
     553           4 : void passgen_blake2b_init(passgen_blake2b_ctx *ctx, size_t hash_size)
     554             : {
     555           4 :         passgen_blake2b_keyed_init(ctx, hash_size, 0, 0);
     556           4 : }
     557             : 
     558          80 : void passgen_blake2b_update(passgen_blake2b_ctx *ctx,
     559             :                            const u8 *message, size_t message_size)
     560             : {
     561             :         // Avoid undefined NULL pointer increments with empty messages
     562          80 :         if (message_size == 0) {
     563           1 :                 return;
     564             :         }
     565             : 
     566             :         // Align with word boundaries
     567          79 :         if ((ctx->input_idx & 7) != 0) {
     568          12 :                 size_t nb_bytes = MIN(gap(ctx->input_idx, 8), message_size);
     569          12 :                 size_t word     = ctx->input_idx >> 3;
     570          12 :                 size_t byte     = ctx->input_idx & 7;
     571          56 :                 FOR (i, 0, nb_bytes) {
     572          44 :                         ctx->input[word] |= (u64)message[i] << ((byte + i) << 3);
     573             :                 }
     574          12 :                 ctx->input_idx += nb_bytes;
     575          12 :                 message        += nb_bytes;
     576          12 :                 message_size   -= nb_bytes;
     577             :         }
     578             : 
     579             :         // Align with block boundaries (faster than byte by byte)
     580          79 :         if ((ctx->input_idx & 127) != 0) {
     581          15 :                 size_t nb_words = MIN(gap(ctx->input_idx, 128), message_size) >> 3;
     582          15 :                 load64_le_buf(ctx->input + (ctx->input_idx >> 3), message, nb_words);
     583          15 :                 ctx->input_idx += nb_words << 3;
     584          15 :                 message        += nb_words << 3;
     585          15 :                 message_size   -= nb_words << 3;
     586             :         }
     587             : 
     588             :         // Process block by block
     589          79 :         size_t nb_blocks = message_size >> 7;
     590          86 :         FOR (i, 0, nb_blocks) {
     591           7 :                 if (ctx->input_idx == 128) {
     592           7 :                         blake2b_compress(ctx, 0);
     593             :                 }
     594           7 :                 load64_le_buf(ctx->input, message, 16);
     595           7 :                 message += 128;
     596           7 :                 ctx->input_idx = 128;
     597             :         }
     598          79 :         message_size &= 127;
     599             : 
     600          79 :         if (message_size != 0) {
     601             :                 // Compress block & flush input buffer as needed
     602          75 :                 if (ctx->input_idx == 128) {
     603           1 :                         blake2b_compress(ctx, 0);
     604           1 :                         ctx->input_idx = 0;
     605             :                 }
     606          75 :                 if (ctx->input_idx == 0) {
     607        1105 :                         ZERO(ctx->input, 16);
     608             :                 }
     609             :                 // Fill remaining words (faster than byte by byte)
     610          75 :                 size_t nb_words = message_size >> 3;
     611          75 :                 load64_le_buf(ctx->input, message, nb_words);
     612          75 :                 ctx->input_idx += nb_words << 3;
     613          75 :                 message        += nb_words << 3;
     614          75 :                 message_size   -= nb_words << 3;
     615             : 
     616             :                 // Fill remaining bytes
     617         134 :                 FOR (i, 0, message_size) {
     618          59 :                         size_t word = ctx->input_idx >> 3;
     619          59 :                         size_t byte = ctx->input_idx & 7;
     620          59 :                         ctx->input[word] |= (u64)message[i] << (byte << 3);
     621          59 :                         ctx->input_idx++;
     622             :                 }
     623             :         }
     624             : }
     625             : 
     626          64 : void passgen_blake2b_final(passgen_blake2b_ctx *ctx, u8 *hash)
     627             : {
     628          64 :         blake2b_compress(ctx, 1); // compress the last block
     629          64 :         size_t hash_size = MIN(ctx->hash_size, 64);
     630          64 :         size_t nb_words  = hash_size >> 3;
     631          64 :         store64_le_buf(hash, ctx->hash, nb_words);
     632          64 :         FOR (i, nb_words << 3, hash_size) {
     633           0 :                 hash[i] = (ctx->hash[i >> 3] >> (8 * (i & 7))) & 0xff;
     634             :         }
     635          64 :         WIPE_CTX(ctx);
     636          64 : }
     637             : 
     638          60 : void passgen_blake2b_keyed(u8 *hash,          size_t hash_size,
     639             :                           const u8 *key,     size_t key_size,
     640             :                           const u8 *message, size_t message_size)
     641             : {
     642             :         passgen_blake2b_ctx ctx;
     643          60 :         passgen_blake2b_keyed_init(&ctx, hash_size, key, key_size);
     644          60 :         passgen_blake2b_update    (&ctx, message, message_size);
     645          60 :         passgen_blake2b_final     (&ctx, hash);
     646          60 : }
     647             : 
     648          60 : void passgen_blake2b(u8 *hash, size_t hash_size, const u8 *msg, size_t msg_size)
     649             : {
     650          60 :         passgen_blake2b_keyed(hash, hash_size, 0, 0, msg, msg_size);
     651          60 : }
     652             : 
     653             : //////////////
     654             : /// Argon2 ///
     655             : //////////////
     656             : // references to R, Z, Q etc. come from the spec
     657             : 
     658             : // Argon2 operates on 1024 byte blocks.
     659             : typedef struct { u64 a[128]; } blk;
     660             : 
     661             : // updates a BLAKE2 hash with a 32 bit word, little endian.
     662          13 : static void blake_update_32(passgen_blake2b_ctx *ctx, u32 input)
     663             : {
     664             :         u8 buf[4];
     665          13 :         store32_le(buf, input);
     666          13 :         passgen_blake2b_update(ctx, buf, 4);
     667          13 :         WIPE_BUFFER(buf);
     668          13 : }
     669             : 
     670           4 : static void blake_update_32_buf(passgen_blake2b_ctx *ctx,
     671             :                                 const u8 *buf, u32 size)
     672             : {
     673           4 :         blake_update_32(ctx, size);
     674           4 :         passgen_blake2b_update(ctx, buf, size);
     675           4 : }
     676             : 
     677             : 
     678        9030 : static void copy_block(blk *o,const blk*in){FOR(i, 0, 128) o->a[i]  = in->a[i];}
     679       23478 : static void  xor_block(blk *o,const blk*in){FOR(i, 0, 128) o->a[i] ^= in->a[i];}
     680             : 
     681             : // Hash with a virtually unlimited digest size.
     682             : // Doesn't extract more entropy than the base hash function.
     683             : // Mainly used for filling a whole kilobyte block with pseudo-random bytes.
     684             : // (One could use a stream cipher with a seed hash as the key, but
     685             : //  this would introduce another dependency —and point of failure.)
     686           3 : static void extended_hash(u8       *digest, u32 digest_size,
     687             :                           const u8 *input , u32 input_size)
     688             : {
     689             :         passgen_blake2b_ctx ctx;
     690           3 :         passgen_blake2b_init  (&ctx, MIN(digest_size, 64));
     691           3 :         blake_update_32      (&ctx, digest_size);
     692           3 :         passgen_blake2b_update(&ctx, input, input_size);
     693           3 :         passgen_blake2b_final (&ctx, digest);
     694             : 
     695           3 :         if (digest_size > 64) {
     696             :                 // the conversion to u64 avoids integer overflow on
     697             :                 // ludicrously big hash sizes.
     698           2 :                 u32 r   = (u32)(((u64)digest_size + 31) >> 5) - 2;
     699           2 :                 u32 i   =  1;
     700           2 :                 u32 in  =  0;
     701           2 :                 u32 out = 32;
     702          60 :                 while (i < r) {
     703             :                         // Input and output overlap. This is intentional
     704          58 :                         passgen_blake2b(digest + out, 64, digest + in, 64);
     705          58 :                         i   +=  1;
     706          58 :                         in  += 32;
     707          58 :                         out += 32;
     708             :                 }
     709           2 :                 passgen_blake2b(digest + out, digest_size - (32 * r), digest + in , 64);
     710             :         }
     711           3 : }
     712             : 
     713             : #define LSB(x) ((u64)(u32)x)
     714             : #define G(a, b, c, d)   \
     715             :         a += b + ((LSB(a) * LSB(b)) << 1);  d ^= a;  d = rotr64(d, 32); \
     716             :         c += d + ((LSB(c) * LSB(d)) << 1);  b ^= c;  b = rotr64(b, 24); \
     717             :         a += b + ((LSB(a) * LSB(b)) << 1);  d ^= a;  d = rotr64(d, 16); \
     718             :         c += d + ((LSB(c) * LSB(d)) << 1);  b ^= c;  b = rotr64(b, 63)
     719             : #define ROUND(v0,  v1,  v2,  v3,  v4,  v5,  v6,  v7,    \
     720             :               v8,  v9, v10, v11, v12, v13, v14, v15)    \
     721             :         G(v0, v4,  v8, v12);  G(v1, v5,  v9, v13); \
     722             :         G(v2, v6, v10, v14);  G(v3, v7, v11, v15); \
     723             :         G(v0, v5, v10, v15);  G(v1, v6, v11, v12); \
     724             :         G(v2, v7,  v8, v13);  G(v3, v4,  v9, v14)
     725             : 
     726             : // Core of the compression function G.  Computes Z from R in place.
     727          64 : static void g_rounds(blk *b)
     728             : {
     729             :         // column rounds (work_block = Q)
     730         576 :         for (int i = 0; i < 128; i += 16) {
     731         512 :                 ROUND(b->a[i   ], b->a[i+ 1], b->a[i+ 2], b->a[i+ 3],
     732             :                       b->a[i+ 4], b->a[i+ 5], b->a[i+ 6], b->a[i+ 7],
     733             :                       b->a[i+ 8], b->a[i+ 9], b->a[i+10], b->a[i+11],
     734             :                       b->a[i+12], b->a[i+13], b->a[i+14], b->a[i+15]);
     735             :         }
     736             :         // row rounds (b = Z)
     737         576 :         for (int i = 0; i < 16; i += 2) {
     738         512 :                 ROUND(b->a[i   ], b->a[i+ 1], b->a[i+ 16], b->a[i+ 17],
     739             :                       b->a[i+32], b->a[i+33], b->a[i+ 48], b->a[i+ 49],
     740             :                       b->a[i+64], b->a[i+65], b->a[i+ 80], b->a[i+ 81],
     741             :                       b->a[i+96], b->a[i+97], b->a[i+112], b->a[i+113]);
     742             :         }
     743          64 : }
     744             : 
     745             : const passgen_argon2_extras passgen_argon2_no_extras = { 0, 0, 0, 0 };
     746             : 
     747           1 : void passgen_argon2(u8 *hash, u32 hash_size, void *work_area,
     748             :                    passgen_argon2_config config,
     749             :                    passgen_argon2_inputs inputs,
     750             :                    passgen_argon2_extras extras)
     751             : {
     752           1 :         const u32 segment_size = config.nb_blocks / config.nb_lanes / 4;
     753           1 :         const u32 lane_size    = segment_size * 4;
     754           1 :         const u32 nb_blocks    = lane_size * config.nb_lanes; // rounding down
     755             : 
     756             :         // work area seen as blocks (must be suitably aligned)
     757           1 :         blk *blocks = (blk*)work_area;
     758             :         {
     759             :                 u8 initial_hash[72]; // 64 bytes plus 2 words for future hashes
     760             :                 passgen_blake2b_ctx ctx;
     761           1 :                 passgen_blake2b_init (&ctx, 64);
     762           1 :                 blake_update_32     (&ctx, config.nb_lanes ); // p: number of "threads"
     763           1 :                 blake_update_32     (&ctx, hash_size);
     764           1 :                 blake_update_32     (&ctx, config.nb_blocks);
     765           1 :                 blake_update_32     (&ctx, config.nb_passes);
     766           1 :                 blake_update_32     (&ctx, 0x13);             // v: version number
     767           1 :                 blake_update_32     (&ctx, config.algorithm); // y: Argon2i, Argon2d...
     768           1 :                 blake_update_32_buf (&ctx, inputs.pass, inputs.pass_size);
     769           1 :                 blake_update_32_buf (&ctx, inputs.salt, inputs.salt_size);
     770           1 :                 blake_update_32_buf (&ctx, extras.key,  extras.key_size);
     771           1 :                 blake_update_32_buf (&ctx, extras.ad,   extras.ad_size);
     772           1 :                 passgen_blake2b_final(&ctx, initial_hash); // fill 64 first bytes only
     773             : 
     774             :                 // fill first 2 blocks of each lane
     775             :                 u8 hash_area[1024];
     776           2 :                 FOR_T(u32, l, 0, config.nb_lanes) {
     777           3 :                         FOR_T(u32, i, 0, 2) {
     778           2 :                                 store32_le(initial_hash + 64, i); // first  additional word
     779           2 :                                 store32_le(initial_hash + 68, l); // second additional word
     780           2 :                                 extended_hash(hash_area, 1024, initial_hash, 72);
     781           2 :                                 load64_le_buf(blocks[l * lane_size + i].a, hash_area, 128);
     782             :                         }
     783             :                 }
     784             : 
     785           1 :                 WIPE_BUFFER(initial_hash);
     786           1 :                 WIPE_BUFFER(hash_area);
     787             :         }
     788             : 
     789             :         // Argon2i and Argon2id start with constant time indexing
     790           1 :         int constant_time = config.algorithm != CRYPTO_ARGON2_D;
     791             : 
     792             :         // Fill (and re-fill) the rest of the blocks
     793             :         //
     794             :         // Note: even though each segment within the same slice can be
     795             :         // computed in parallel, (one thread per lane), we are computing
     796             :         // them sequentially, because Monocypher doesn't support threads.
     797             :         //
     798             :         // Yet optimal performance (and therefore security) requires one
     799             :         // thread per lane. The only reason Monocypher supports multiple
     800             :         // lanes is compatibility.
     801             :         blk tmp;
     802           9 :         FOR_T(u32, pass, 0, config.nb_passes) {
     803          40 :                 FOR_T(u32, slice, 0, 4) {
     804             :                         // On the first slice of the first pass,
     805             :                         // blocks 0 and 1 are already filled, hence pass_offset.
     806          32 :                         u32 pass_offset  = pass == 0 && slice == 0 ? 2 : 0;
     807          32 :                         u32 slice_offset = slice * segment_size;
     808             : 
     809             :                         // Argon2id switches back to non-constant time indexing
     810             :                         // after the first two slices of the first pass
     811          32 :                         if (slice == 2 && config.algorithm == CRYPTO_ARGON2_ID) {
     812           8 :                                 constant_time = 0;
     813             :                         }
     814             : 
     815             :                         // Each iteration of the following loop may be performed in
     816             :                         // a separate thread.  All segments must be fully completed
     817             :                         // before we start filling the next slice.
     818          64 :                         FOR_T(u32, segment, 0, config.nb_lanes) {
     819             :                                 blk index_block;
     820          32 :                                 u32 index_ctr = 1;
     821          94 :                                 FOR_T (u32, block, pass_offset, segment_size) {
     822             :                                         // Current and previous blocks
     823          62 :                                         u32  lane_offset   = segment * lane_size;
     824          62 :                                         blk *segment_start = blocks + lane_offset + slice_offset;
     825          62 :                                         blk *current       = segment_start + block;
     826          62 :                                         blk *previous      =
     827          31 :                                                 block == 0 && slice_offset == 0
     828           7 :                                                 ? segment_start + lane_size - 1
     829          93 :                                                 : segment_start + block - 1;
     830             : 
     831             :                                         u64 index_seed;
     832          62 :                                         if (constant_time) {
     833           2 :                                                 if (block == pass_offset || (block % 128) == 0) {
     834             :                                                         // Fill or refresh deterministic indices block
     835             : 
     836             :                                                         // seed the beginning of the block...
     837         129 :                                                         ZERO(index_block.a, 128);
     838           1 :                                                         index_block.a[0] = pass;
     839           1 :                                                         index_block.a[1] = segment;
     840           1 :                                                         index_block.a[2] = slice;
     841           1 :                                                         index_block.a[3] = nb_blocks;
     842           1 :                                                         index_block.a[4] = config.nb_passes;
     843           1 :                                                         index_block.a[5] = config.algorithm;
     844           1 :                                                         index_block.a[6] = index_ctr;
     845           1 :                                                         index_ctr++;
     846             : 
     847             :                                                         // ... then shuffle it
     848           1 :                                                         copy_block(&tmp, &index_block);
     849           1 :                                                         g_rounds  (&index_block);
     850           1 :                                                         xor_block (&index_block, &tmp);
     851           1 :                                                         copy_block(&tmp, &index_block);
     852           1 :                                                         g_rounds  (&index_block);
     853           1 :                                                         xor_block (&index_block, &tmp);
     854             :                                                 }
     855           2 :                                                 index_seed = index_block.a[block % 128];
     856             :                                         } else {
     857          60 :                                                 index_seed = previous->a[0];
     858             :                                         }
     859             : 
     860             :                                         // Establish the reference set.  *Approximately* comprises:
     861             :                                         // - The last 3 slices (if they exist yet)
     862             :                                         // - The already constructed blocks in the current segment
     863          62 :                                         u32 next_slice   = ((slice + 1) % 4) * segment_size;
     864          62 :                                         u32 window_start = pass == 0 ? 0     : next_slice;
     865          62 :                                         u32 nb_segments  = pass == 0 ? slice : 3;
     866          62 :                                         u64 lane         =
     867           6 :                                                 pass == 0 && slice == 0
     868             :                                                 ? segment
     869          68 :                                                 : (index_seed >> 32) % config.nb_lanes;
     870          62 :                                         u32 window_size  =
     871          62 :                                                 nb_segments * segment_size +
     872          62 :                                                 (lane  == segment ? block-1 :
     873             :                                                  block == 0       ? (u32)-1 : 0);
     874             : 
     875             :                                         // Find reference block
     876          62 :                                         u64  j1        = index_seed & 0xffffffff; // block selector
     877          62 :                                         u64  x         = (j1 * j1)         >> 32;
     878          62 :                                         u64  y         = (window_size * x) >> 32;
     879          62 :                                         u64  z         = (window_size - 1) - y;
     880          62 :                                         u64  ref       = (window_start + z) % lane_size;
     881          62 :                                         u32  index     = lane * lane_size + (u32)ref;
     882          62 :                                         blk *reference = blocks + index;
     883             : 
     884             :                                         // Shuffle the previous & reference block
     885             :                                         // into the current block
     886          62 :                                         copy_block(&tmp, previous);
     887          62 :                                         xor_block (&tmp, reference);
     888          62 :                                         if (pass == 0) { copy_block(current, &tmp); }
     889          56 :                                         else           { xor_block (current, &tmp); }
     890          62 :                                         g_rounds  (&tmp);
     891          62 :                                         xor_block (current, &tmp);
     892             :                                 }
     893             :                         }
     894             :                 }
     895             :         }
     896             : 
     897             :         // Wipe temporary block
     898           1 :         volatile u64* p = tmp.a;
     899         129 :         ZERO(p, 128);
     900             : 
     901             :         // XOR last blocks of each lane
     902           1 :         blk *last_block = blocks + lane_size - 1;
     903           1 :         FOR_T (u32, lane, 1, config.nb_lanes) {
     904           0 :                 blk *next_block = last_block + lane_size;
     905           0 :                 xor_block(next_block, last_block);
     906           0 :                 last_block = next_block;
     907             :         }
     908             : 
     909             :         // Serialize last block
     910             :         u8 final_block[1024];
     911           1 :         store64_le_buf(final_block, last_block->a, 128);
     912             : 
     913             :         // Wipe work area
     914           1 :         p = (u64*)work_area;
     915        1025 :         ZERO(p, 128 * nb_blocks);
     916             : 
     917             :         // Hash the very last block with H' into the output hash
     918           1 :         extended_hash(hash, hash_size, final_block, 1024);
     919           1 :         WIPE_BUFFER(final_block);
     920           1 : }
     921             : 
     922             : ////////////////////////////////////
     923             : /// Arithmetic modulo 2^255 - 19 ///
     924             : ////////////////////////////////////
     925             : //  Originally taken from SUPERCOP's ref10 implementation.
     926             : //  A bit bigger than TweetNaCl, over 4 times faster.
     927             : 
     928             : // field element
     929             : typedef i32 fe[10];
     930             : 
     931             : // field constants
     932             : //
     933             : // fe_one      : 1
     934             : // sqrtm1      : sqrt(-1)
     935             : // d           :     -121665 / 121666
     936             : // D2          : 2 * -121665 / 121666
     937             : // lop_x, lop_y: low order point in Edwards coordinates
     938             : // ufactor     : -sqrt(-1) * 2
     939             : // A2          : 486662^2  (A squared)
     940             : static const fe fe_one  = {1};
     941             : static const fe sqrtm1  = {
     942             :         -32595792, -7943725, 9377950, 3500415, 12389472,
     943             :         -272473, -25146209, -2005654, 326686, 11406482,
     944             : };
     945             : static const fe d       = {
     946             :         -10913610, 13857413, -15372611, 6949391, 114729,
     947             :         -8787816, -6275908, -3247719, -18696448, -12055116,
     948             : };
     949             : static const fe D2      = {
     950             :         -21827239, -5839606, -30745221, 13898782, 229458,
     951             :         15978800, -12551817, -6495438, 29715968, 9444199,
     952             : };
     953             : static const fe lop_x   = {
     954             :         21352778, 5345713, 4660180, -8347857, 24143090,
     955             :         14568123, 30185756, -12247770, -33528939, 8345319,
     956             : };
     957             : static const fe lop_y   = {
     958             :         -6952922, -1265500, 6862341, -7057498, -4037696,
     959             :         -5447722, 31680899, -15325402, -19365852, 1569102,
     960             : };
     961             : static const fe ufactor = {
     962             :         -1917299, 15887451, -18755900, -7000830, -24778944,
     963             :         544946, -16816446, 4011309, -653372, 10741468,
     964             : };
     965             : static const fe A2      = {
     966             :         12721188, 3529, 0, 0, 0, 0, 0, 0, 0, 0,
     967             : };
     968             : 
     969           0 : static void fe_0(fe h) {           ZERO(h  , 10); }
     970           0 : static void fe_1(fe h) { h[0] = 1; ZERO(h+1,  9); }
     971             : 
     972           0 : static void fe_copy(fe h,const fe f           ){FOR(i,0,10) h[i] =  f[i];      }
     973           0 : static void fe_neg (fe h,const fe f           ){FOR(i,0,10) h[i] = -f[i];      }
     974           0 : static void fe_add (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] + g[i];}
     975           0 : static void fe_sub (fe h,const fe f,const fe g){FOR(i,0,10) h[i] = f[i] - g[i];}
     976             : 
     977           0 : static void fe_cswap(fe f, fe g, int b)
     978             : {
     979           0 :         i32 mask = -b; // -1 = 0xffffffff
     980           0 :         FOR (i, 0, 10) {
     981           0 :                 i32 x = (f[i] ^ g[i]) & mask;
     982           0 :                 f[i] = f[i] ^ x;
     983           0 :                 g[i] = g[i] ^ x;
     984             :         }
     985           0 : }
     986             : 
     987           0 : static void fe_ccopy(fe f, const fe g, int b)
     988             : {
     989           0 :         i32 mask = -b; // -1 = 0xffffffff
     990           0 :         FOR (i, 0, 10) {
     991           0 :                 i32 x = (f[i] ^ g[i]) & mask;
     992           0 :                 f[i] = f[i] ^ x;
     993             :         }
     994           0 : }
     995             : 
     996             : 
     997             : // Signed carry propagation
     998             : // ------------------------
     999             : //
    1000             : // Let t be a number.  It can be uniquely decomposed thus:
    1001             : //
    1002             : //    t = h*2^26 + l
    1003             : //    such that -2^25 <= l < 2^25
    1004             : //
    1005             : // Let c = (t + 2^25) / 2^26            (rounded down)
    1006             : //     c = (h*2^26 + l + 2^25) / 2^26   (rounded down)
    1007             : //     c =  h   +   (l + 2^25) / 2^26   (rounded down)
    1008             : //     c =  h                           (exactly)
    1009             : // Because 0 <= l + 2^25 < 2^26
    1010             : //
    1011             : // Let u = t          - c*2^26
    1012             : //     u = h*2^26 + l - h*2^26
    1013             : //     u = l
    1014             : // Therefore, -2^25 <= u < 2^25
    1015             : //
    1016             : // Additionally, if |t| < x, then |h| < x/2^26 (rounded down)
    1017             : //
    1018             : // Notations:
    1019             : // - In C, 1<<25 means 2^25.
    1020             : // - In C, x>>25 means floor(x / (2^25)).
    1021             : // - All of the above applies with 25 & 24 as well as 26 & 25.
    1022             : //
    1023             : //
    1024             : // Note on negative right shifts
    1025             : // -----------------------------
    1026             : //
    1027             : // In C, x >> n, where x is a negative integer, is implementation
    1028             : // defined.  In practice, all platforms do arithmetic shift, which is
    1029             : // equivalent to division by 2^26, rounded down.  Some compilers, like
    1030             : // GCC, even guarantee it.
    1031             : //
    1032             : // If we ever stumble upon a platform that does not propagate the sign
    1033             : // bit (we won't), visible failures will show at the slightest test, and
    1034             : // the signed shifts can be replaced by the following:
    1035             : //
    1036             : //     typedef struct { i64 x:39; } s25;
    1037             : //     typedef struct { i64 x:38; } s26;
    1038             : //     i64 shift25(i64 x) { s25 s; s.x = ((u64)x)>>25; return s.x; }
    1039             : //     i64 shift26(i64 x) { s26 s; s.x = ((u64)x)>>26; return s.x; }
    1040             : //
    1041             : // Current compilers cannot optimise this, causing a 30% drop in
    1042             : // performance.  Fairly expensive for something that never happens.
    1043             : //
    1044             : //
    1045             : // Precondition
    1046             : // ------------
    1047             : //
    1048             : // |t0|       < 2^63
    1049             : // |t1|..|t9| < 2^62
    1050             : //
    1051             : // Algorithm
    1052             : // ---------
    1053             : // c   = t0 + 2^25 / 2^26   -- |c|  <= 2^36
    1054             : // t0 -= c * 2^26           -- |t0| <= 2^25
    1055             : // t1 += c                  -- |t1| <= 2^63
    1056             : //
    1057             : // c   = t4 + 2^25 / 2^26   -- |c|  <= 2^36
    1058             : // t4 -= c * 2^26           -- |t4| <= 2^25
    1059             : // t5 += c                  -- |t5| <= 2^63
    1060             : //
    1061             : // c   = t1 + 2^24 / 2^25   -- |c|  <= 2^38
    1062             : // t1 -= c * 2^25           -- |t1| <= 2^24
    1063             : // t2 += c                  -- |t2| <= 2^63
    1064             : //
    1065             : // c   = t5 + 2^24 / 2^25   -- |c|  <= 2^38
    1066             : // t5 -= c * 2^25           -- |t5| <= 2^24
    1067             : // t6 += c                  -- |t6| <= 2^63
    1068             : //
    1069             : // c   = t2 + 2^25 / 2^26   -- |c|  <= 2^37
    1070             : // t2 -= c * 2^26           -- |t2| <= 2^25        < 1.1 * 2^25  (final t2)
    1071             : // t3 += c                  -- |t3| <= 2^63
    1072             : //
    1073             : // c   = t6 + 2^25 / 2^26   -- |c|  <= 2^37
    1074             : // t6 -= c * 2^26           -- |t6| <= 2^25        < 1.1 * 2^25  (final t6)
    1075             : // t7 += c                  -- |t7| <= 2^63
    1076             : //
    1077             : // c   = t3 + 2^24 / 2^25   -- |c|  <= 2^38
    1078             : // t3 -= c * 2^25           -- |t3| <= 2^24        < 1.1 * 2^24  (final t3)
    1079             : // t4 += c                  -- |t4| <= 2^25 + 2^38 < 2^39
    1080             : //
    1081             : // c   = t7 + 2^24 / 2^25   -- |c|  <= 2^38
    1082             : // t7 -= c * 2^25           -- |t7| <= 2^24        < 1.1 * 2^24  (final t7)
    1083             : // t8 += c                  -- |t8| <= 2^63
    1084             : //
    1085             : // c   = t4 + 2^25 / 2^26   -- |c|  <= 2^13
    1086             : // t4 -= c * 2^26           -- |t4| <= 2^25        < 1.1 * 2^25  (final t4)
    1087             : // t5 += c                  -- |t5| <= 2^24 + 2^13 < 1.1 * 2^24  (final t5)
    1088             : //
    1089             : // c   = t8 + 2^25 / 2^26   -- |c|  <= 2^37
    1090             : // t8 -= c * 2^26           -- |t8| <= 2^25        < 1.1 * 2^25  (final t8)
    1091             : // t9 += c                  -- |t9| <= 2^63
    1092             : //
    1093             : // c   = t9 + 2^24 / 2^25   -- |c|  <= 2^38
    1094             : // t9 -= c * 2^25           -- |t9| <= 2^24        < 1.1 * 2^24  (final t9)
    1095             : // t0 += c * 19             -- |t0| <= 2^25 + 2^38*19 < 2^44
    1096             : //
    1097             : // c   = t0 + 2^25 / 2^26   -- |c|  <= 2^18
    1098             : // t0 -= c * 2^26           -- |t0| <= 2^25        < 1.1 * 2^25  (final t0)
    1099             : // t1 += c                  -- |t1| <= 2^24 + 2^18 < 1.1 * 2^24  (final t1)
    1100             : //
    1101             : // Postcondition
    1102             : // -------------
    1103             : //   |t0|, |t2|, |t4|, |t6|, |t8|  <  1.1 * 2^25
    1104             : //   |t1|, |t3|, |t5|, |t7|, |t9|  <  1.1 * 2^24
    1105             : #define FE_CARRY        \
    1106             :         i64 c; \
    1107             :         c = (t0 + ((i64)1<<25)) >> 26;  t0 -= c * ((i64)1 << 26);  t1 += c; \
    1108             :         c = (t4 + ((i64)1<<25)) >> 26;  t4 -= c * ((i64)1 << 26);  t5 += c; \
    1109             :         c = (t1 + ((i64)1<<24)) >> 25;  t1 -= c * ((i64)1 << 25);  t2 += c; \
    1110             :         c = (t5 + ((i64)1<<24)) >> 25;  t5 -= c * ((i64)1 << 25);  t6 += c; \
    1111             :         c = (t2 + ((i64)1<<25)) >> 26;  t2 -= c * ((i64)1 << 26);  t3 += c; \
    1112             :         c = (t6 + ((i64)1<<25)) >> 26;  t6 -= c * ((i64)1 << 26);  t7 += c; \
    1113             :         c = (t3 + ((i64)1<<24)) >> 25;  t3 -= c * ((i64)1 << 25);  t4 += c; \
    1114             :         c = (t7 + ((i64)1<<24)) >> 25;  t7 -= c * ((i64)1 << 25);  t8 += c; \
    1115             :         c = (t4 + ((i64)1<<25)) >> 26;  t4 -= c * ((i64)1 << 26);  t5 += c; \
    1116             :         c = (t8 + ((i64)1<<25)) >> 26;  t8 -= c * ((i64)1 << 26);  t9 += c; \
    1117             :         c = (t9 + ((i64)1<<24)) >> 25;  t9 -= c * ((i64)1 << 25);  t0 += c * 19; \
    1118             :         c = (t0 + ((i64)1<<25)) >> 26;  t0 -= c * ((i64)1 << 26);  t1 += c; \
    1119             :         h[0]=(i32)t0;  h[1]=(i32)t1;  h[2]=(i32)t2;  h[3]=(i32)t3;  h[4]=(i32)t4; \
    1120             :         h[5]=(i32)t5;  h[6]=(i32)t6;  h[7]=(i32)t7;  h[8]=(i32)t8;  h[9]=(i32)t9
    1121             : 
    1122             : // Decodes a field element from a byte buffer.
    1123             : // mask specifies how many bits we ignore.
    1124             : // Traditionally we ignore 1. It's useful for EdDSA,
    1125             : // which uses that bit to denote the sign of x.
    1126             : // Elligator however uses positive representatives,
    1127             : // which means ignoring 2 bits instead.
    1128           0 : static void fe_frombytes_mask(fe h, const u8 s[32], unsigned nb_mask)
    1129             : {
    1130           0 :         u32 mask = 0xffffff >> nb_mask;
    1131           0 :         i64 t0 =  load32_le(s);                    // t0 < 2^32
    1132           0 :         i64 t1 =  load24_le(s +  4) << 6;          // t1 < 2^30
    1133           0 :         i64 t2 =  load24_le(s +  7) << 5;          // t2 < 2^29
    1134           0 :         i64 t3 =  load24_le(s + 10) << 3;          // t3 < 2^27
    1135           0 :         i64 t4 =  load24_le(s + 13) << 2;          // t4 < 2^26
    1136           0 :         i64 t5 =  load32_le(s + 16);               // t5 < 2^32
    1137           0 :         i64 t6 =  load24_le(s + 20) << 7;          // t6 < 2^31
    1138           0 :         i64 t7 =  load24_le(s + 23) << 5;          // t7 < 2^29
    1139           0 :         i64 t8 =  load24_le(s + 26) << 4;          // t8 < 2^28
    1140           0 :         i64 t9 = (load24_le(s + 29) & mask) << 2;  // t9 < 2^25
    1141           0 :         FE_CARRY;                                  // Carry precondition OK
    1142           0 : }
    1143             : 
    1144           0 : static void fe_frombytes(fe h, const u8 s[32])
    1145             : {
    1146           0 :         fe_frombytes_mask(h, s, 1);
    1147           0 : }
    1148             : 
    1149             : 
    1150             : // Precondition
    1151             : //   |h[0]|, |h[2]|, |h[4]|, |h[6]|, |h[8]|  <  1.1 * 2^25
    1152             : //   |h[1]|, |h[3]|, |h[5]|, |h[7]|, |h[9]|  <  1.1 * 2^24
    1153             : //
    1154             : // Therefore, |h| < 2^255-19
    1155             : // There are two possibilities:
    1156             : //
    1157             : // - If h is positive, all we need to do is reduce its individual
    1158             : //   limbs down to their tight positive range.
    1159             : // - If h is negative, we also need to add 2^255-19 to it.
    1160             : //   Or just remove 19 and chop off any excess bit.
    1161           0 : static void fe_tobytes(u8 s[32], const fe h)
    1162             : {
    1163             :         i32 t[10];
    1164           0 :         COPY(t, h, 10);
    1165           0 :         i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25;
    1166             :         //                 |t9|                    < 1.1 * 2^24
    1167             :         //  -1.1 * 2^24  <  t9                     < 1.1 * 2^24
    1168             :         //  -21  * 2^24  <  19 * t9                < 21  * 2^24
    1169             :         //  -2^29        <  19 * t9 + 2^24         < 2^29
    1170             :         //  -2^29 / 2^25 < (19 * t9 + 2^24) / 2^25 < 2^29 / 2^25
    1171             :         //  -16          < (19 * t9 + 2^24) / 2^25 < 16
    1172           0 :         FOR (i, 0, 5) {
    1173           0 :                 q += t[2*i  ]; q >>= 26; // q = 0 or -1
    1174           0 :                 q += t[2*i+1]; q >>= 25; // q = 0 or -1
    1175             :         }
    1176             :         // q =  0 iff h >= 0
    1177             :         // q = -1 iff h <  0
    1178             :         // Adding q * 19 to h reduces h to its proper range.
    1179           0 :         q *= 19;  // Shift carry back to the beginning
    1180           0 :         FOR (i, 0, 5) {
    1181           0 :                 t[i*2  ] += q;  q = t[i*2  ] >> 26;  t[i*2  ] -= q * ((i32)1 << 26);
    1182           0 :                 t[i*2+1] += q;  q = t[i*2+1] >> 25;  t[i*2+1] -= q * ((i32)1 << 25);
    1183             :         }
    1184             :         // h is now fully reduced, and q represents the excess bit.
    1185             : 
    1186           0 :         store32_le(s +  0, ((u32)t[0] >>  0) | ((u32)t[1] << 26));
    1187           0 :         store32_le(s +  4, ((u32)t[1] >>  6) | ((u32)t[2] << 19));
    1188           0 :         store32_le(s +  8, ((u32)t[2] >> 13) | ((u32)t[3] << 13));
    1189           0 :         store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] <<  6));
    1190           0 :         store32_le(s + 16, ((u32)t[5] >>  0) | ((u32)t[6] << 25));
    1191           0 :         store32_le(s + 20, ((u32)t[6] >>  7) | ((u32)t[7] << 19));
    1192           0 :         store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12));
    1193           0 :         store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] <<  6));
    1194             : 
    1195           0 :         WIPE_BUFFER(t);
    1196           0 : }
    1197             : 
    1198             : // Precondition
    1199             : // -------------
    1200             : //   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
    1201             : //   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
    1202             : //
    1203             : //   |g0|, |g2|, |g4|, |g6|, |g8|  <  1.65 * 2^26
    1204             : //   |g1|, |g3|, |g5|, |g7|, |g9|  <  1.65 * 2^25
    1205           0 : static void fe_mul_small(fe h, const fe f, i32 g)
    1206             : {
    1207           0 :         i64 t0 = f[0] * (i64) g;  i64 t1 = f[1] * (i64) g;
    1208           0 :         i64 t2 = f[2] * (i64) g;  i64 t3 = f[3] * (i64) g;
    1209           0 :         i64 t4 = f[4] * (i64) g;  i64 t5 = f[5] * (i64) g;
    1210           0 :         i64 t6 = f[6] * (i64) g;  i64 t7 = f[7] * (i64) g;
    1211           0 :         i64 t8 = f[8] * (i64) g;  i64 t9 = f[9] * (i64) g;
    1212             :         // |t0|, |t2|, |t4|, |t6|, |t8|  <  1.65 * 2^26 * 2^31  < 2^58
    1213             :         // |t1|, |t3|, |t5|, |t7|, |t9|  <  1.65 * 2^25 * 2^31  < 2^57
    1214             : 
    1215           0 :         FE_CARRY; // Carry precondition OK
    1216           0 : }
    1217             : 
    1218             : // Precondition
    1219             : // -------------
    1220             : //   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
    1221             : //   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
    1222             : //
    1223             : //   |g0|, |g2|, |g4|, |g6|, |g8|  <  1.65 * 2^26
    1224             : //   |g1|, |g3|, |g5|, |g7|, |g9|  <  1.65 * 2^25
    1225           0 : static void fe_mul(fe h, const fe f, const fe g)
    1226             : {
    1227             :         // Everything is unrolled and put in temporary variables.
    1228             :         // We could roll the loop, but that would make curve25519 twice as slow.
    1229           0 :         i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
    1230           0 :         i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
    1231           0 :         i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4];
    1232           0 :         i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9];
    1233           0 :         i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2;
    1234           0 :         i32 G1 = g1*19;  i32 G2 = g2*19;  i32 G3 = g3*19;
    1235           0 :         i32 G4 = g4*19;  i32 G5 = g5*19;  i32 G6 = g6*19;
    1236           0 :         i32 G7 = g7*19;  i32 G8 = g8*19;  i32 G9 = g9*19;
    1237             :         // |F1|, |F3|, |F5|, |F7|, |F9|  <  1.65 * 2^26
    1238             :         // |G0|, |G2|, |G4|, |G6|, |G8|  <  2^31
    1239             :         // |G1|, |G3|, |G5|, |G7|, |G9|  <  2^30
    1240             : 
    1241           0 :         i64 t0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6
    1242           0 :                + F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1;
    1243           0 :         i64 t1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7
    1244           0 :                + f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2;
    1245           0 :         i64 t2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8
    1246           0 :                + F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3;
    1247           0 :         i64 t3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9
    1248           0 :                + f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4;
    1249           0 :         i64 t4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0
    1250           0 :                + F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5;
    1251           0 :         i64 t5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1
    1252           0 :                + f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6;
    1253           0 :         i64 t6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2
    1254           0 :                + F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7;
    1255           0 :         i64 t7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3
    1256           0 :                + f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8;
    1257           0 :         i64 t8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4
    1258           0 :                + F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9;
    1259           0 :         i64 t9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5
    1260           0 :                + f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0;
    1261             :         // t0 < 0.67 * 2^61
    1262             :         // t1 < 0.41 * 2^61
    1263             :         // t2 < 0.52 * 2^61
    1264             :         // t3 < 0.32 * 2^61
    1265             :         // t4 < 0.38 * 2^61
    1266             :         // t5 < 0.22 * 2^61
    1267             :         // t6 < 0.23 * 2^61
    1268             :         // t7 < 0.13 * 2^61
    1269             :         // t8 < 0.09 * 2^61
    1270             :         // t9 < 0.03 * 2^61
    1271             : 
    1272           0 :         FE_CARRY; // Everything below 2^62, Carry precondition OK
    1273           0 : }
    1274             : 
    1275             : // Precondition
    1276             : // -------------
    1277             : //   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
    1278             : //   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
    1279             : //
    1280             : // Note: we could use fe_mul() for this, but this is significantly faster
    1281           0 : static void fe_sq(fe h, const fe f)
    1282             : {
    1283           0 :         i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
    1284           0 :         i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
    1285           0 :         i32 f0_2  = f0*2;   i32 f1_2  = f1*2;   i32 f2_2  = f2*2;   i32 f3_2 = f3*2;
    1286           0 :         i32 f4_2  = f4*2;   i32 f5_2  = f5*2;   i32 f6_2  = f6*2;   i32 f7_2 = f7*2;
    1287           0 :         i32 f5_38 = f5*38;  i32 f6_19 = f6*19;  i32 f7_38 = f7*38;
    1288           0 :         i32 f8_19 = f8*19;  i32 f9_38 = f9*38;
    1289             :         // |f0_2| , |f2_2| , |f4_2| , |f6_2| , |f8_2|  <  1.65 * 2^27
    1290             :         // |f1_2| , |f3_2| , |f5_2| , |f7_2| , |f9_2|  <  1.65 * 2^26
    1291             :         // |f5_38|, |f6_19|, |f7_38|, |f8_19|, |f9_38| <  2^31
    1292             : 
    1293           0 :         i64 t0 = f0  *(i64)f0    + f1_2*(i64)f9_38 + f2_2*(i64)f8_19
    1294           0 :                + f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5  *(i64)f5_38;
    1295           0 :         i64 t1 = f0_2*(i64)f1    + f2  *(i64)f9_38 + f3_2*(i64)f8_19
    1296           0 :                + f4  *(i64)f7_38 + f5_2*(i64)f6_19;
    1297           0 :         i64 t2 = f0_2*(i64)f2    + f1_2*(i64)f1    + f3_2*(i64)f9_38
    1298           0 :                + f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6  *(i64)f6_19;
    1299           0 :         i64 t3 = f0_2*(i64)f3    + f1_2*(i64)f2    + f4  *(i64)f9_38
    1300           0 :                + f5_2*(i64)f8_19 + f6  *(i64)f7_38;
    1301           0 :         i64 t4 = f0_2*(i64)f4    + f1_2*(i64)f3_2  + f2  *(i64)f2
    1302           0 :                + f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7  *(i64)f7_38;
    1303           0 :         i64 t5 = f0_2*(i64)f5    + f1_2*(i64)f4    + f2_2*(i64)f3
    1304           0 :                + f6  *(i64)f9_38 + f7_2*(i64)f8_19;
    1305           0 :         i64 t6 = f0_2*(i64)f6    + f1_2*(i64)f5_2  + f2_2*(i64)f4
    1306           0 :                + f3_2*(i64)f3    + f7_2*(i64)f9_38 + f8  *(i64)f8_19;
    1307           0 :         i64 t7 = f0_2*(i64)f7    + f1_2*(i64)f6    + f2_2*(i64)f5
    1308           0 :                + f3_2*(i64)f4    + f8  *(i64)f9_38;
    1309           0 :         i64 t8 = f0_2*(i64)f8    + f1_2*(i64)f7_2  + f2_2*(i64)f6
    1310           0 :                + f3_2*(i64)f5_2  + f4  *(i64)f4    + f9  *(i64)f9_38;
    1311           0 :         i64 t9 = f0_2*(i64)f9    + f1_2*(i64)f8    + f2_2*(i64)f7
    1312           0 :                + f3_2*(i64)f6    + f4  *(i64)f5_2;
    1313             :         // t0 < 0.67 * 2^61
    1314             :         // t1 < 0.41 * 2^61
    1315             :         // t2 < 0.52 * 2^61
    1316             :         // t3 < 0.32 * 2^61
    1317             :         // t4 < 0.38 * 2^61
    1318             :         // t5 < 0.22 * 2^61
    1319             :         // t6 < 0.23 * 2^61
    1320             :         // t7 < 0.13 * 2^61
    1321             :         // t8 < 0.09 * 2^61
    1322             :         // t9 < 0.03 * 2^61
    1323             : 
    1324           0 :         FE_CARRY;
    1325           0 : }
    1326             : 
    1327             : //  Parity check.  Returns 0 if even, 1 if odd
    1328           0 : static int fe_isodd(const fe f)
    1329             : {
    1330             :         u8 s[32];
    1331           0 :         fe_tobytes(s, f);
    1332           0 :         u8 isodd = s[0] & 1;
    1333           0 :         WIPE_BUFFER(s);
    1334           0 :         return isodd;
    1335             : }
    1336             : 
    1337             : // Returns 1 if equal, 0 if not equal
    1338           0 : static int fe_isequal(const fe f, const fe g)
    1339             : {
    1340             :         u8 fs[32];
    1341             :         u8 gs[32];
    1342           0 :         fe_tobytes(fs, f);
    1343           0 :         fe_tobytes(gs, g);
    1344           0 :         int isdifferent = passgen_verify32(fs, gs);
    1345           0 :         WIPE_BUFFER(fs);
    1346           0 :         WIPE_BUFFER(gs);
    1347           0 :         return 1 + isdifferent;
    1348             : }
    1349             : 
    1350             : // Inverse square root.
    1351             : // Returns true if x is a square, false otherwise.
    1352             : // After the call:
    1353             : //   isr = sqrt(1/x)        if x is a non-zero square.
    1354             : //   isr = sqrt(sqrt(-1)/x) if x is not a square.
    1355             : //   isr = 0                if x is zero.
    1356             : // We do not guarantee the sign of the square root.
    1357             : //
    1358             : // Notes:
    1359             : // Let quartic = x^((p-1)/4)
    1360             : //
    1361             : // x^((p-1)/2) = chi(x)
    1362             : // quartic^2   = chi(x)
    1363             : // quartic     = sqrt(chi(x))
    1364             : // quartic     = 1 or -1 or sqrt(-1) or -sqrt(-1)
    1365             : //
    1366             : // Note that x is a square if quartic is 1 or -1
    1367             : // There are 4 cases to consider:
    1368             : //
    1369             : // if   quartic         = 1  (x is a square)
    1370             : // then x^((p-1)/4)     = 1
    1371             : //      x^((p-5)/4) * x = 1
    1372             : //      x^((p-5)/4)     = 1/x
    1373             : //      x^((p-5)/8)     = sqrt(1/x) or -sqrt(1/x)
    1374             : //
    1375             : // if   quartic                = -1  (x is a square)
    1376             : // then x^((p-1)/4)            = -1
    1377             : //      x^((p-5)/4) * x        = -1
    1378             : //      x^((p-5)/4)            = -1/x
    1379             : //      x^((p-5)/8)            = sqrt(-1)   / sqrt(x)
    1380             : //      x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x)
    1381             : //      x^((p-5)/8) * sqrt(-1) = -1/sqrt(x)
    1382             : //      x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x)
    1383             : //
    1384             : // if   quartic         = sqrt(-1)  (x is not a square)
    1385             : // then x^((p-1)/4)     = sqrt(-1)
    1386             : //      x^((p-5)/4) * x = sqrt(-1)
    1387             : //      x^((p-5)/4)     = sqrt(-1)/x
    1388             : //      x^((p-5)/8)     = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x)
    1389             : //
    1390             : // Note that the product of two non-squares is always a square:
    1391             : //   For any non-squares a and b, chi(a) = -1 and chi(b) = -1.
    1392             : //   Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1.
    1393             : //   Therefore a*b is a square.
    1394             : //
    1395             : //   Since sqrt(-1) and x are both non-squares, their product is a
    1396             : //   square, and we can compute their square root.
    1397             : //
    1398             : // if   quartic                = -sqrt(-1)  (x is not a square)
    1399             : // then x^((p-1)/4)            = -sqrt(-1)
    1400             : //      x^((p-5)/4) * x        = -sqrt(-1)
    1401             : //      x^((p-5)/4)            = -sqrt(-1)/x
    1402             : //      x^((p-5)/8)            = sqrt(-sqrt(-1)/x)
    1403             : //      x^((p-5)/8)            = sqrt( sqrt(-1)/x) * sqrt(-1)
    1404             : //      x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2
    1405             : //      x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1
    1406             : //      x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x)
    1407           0 : static int invsqrt(fe isr, const fe x)
    1408             : {
    1409             :         fe t0, t1, t2;
    1410             : 
    1411             :         // t0 = x^((p-5)/8)
    1412             :         // Can be achieved with a simple double & add ladder,
    1413             :         // but it would be slower.
    1414           0 :         fe_sq(t0, x);
    1415           0 :         fe_sq(t1,t0);                     fe_sq(t1, t1);    fe_mul(t1, x, t1);
    1416           0 :         fe_mul(t0, t0, t1);
    1417           0 :         fe_sq(t0, t0);                                      fe_mul(t0, t1, t0);
    1418           0 :         fe_sq(t1, t0);  FOR (i, 1,   5) { fe_sq(t1, t1); }  fe_mul(t0, t1, t0);
    1419           0 :         fe_sq(t1, t0);  FOR (i, 1,  10) { fe_sq(t1, t1); }  fe_mul(t1, t1, t0);
    1420           0 :         fe_sq(t2, t1);  FOR (i, 1,  20) { fe_sq(t2, t2); }  fe_mul(t1, t2, t1);
    1421           0 :         fe_sq(t1, t1);  FOR (i, 1,  10) { fe_sq(t1, t1); }  fe_mul(t0, t1, t0);
    1422           0 :         fe_sq(t1, t0);  FOR (i, 1,  50) { fe_sq(t1, t1); }  fe_mul(t1, t1, t0);
    1423           0 :         fe_sq(t2, t1);  FOR (i, 1, 100) { fe_sq(t2, t2); }  fe_mul(t1, t2, t1);
    1424           0 :         fe_sq(t1, t1);  FOR (i, 1,  50) { fe_sq(t1, t1); }  fe_mul(t0, t1, t0);
    1425           0 :         fe_sq(t0, t0);  FOR (i, 1,   2) { fe_sq(t0, t0); }  fe_mul(t0, t0, x);
    1426             : 
    1427             :         // quartic = x^((p-1)/4)
    1428           0 :         i32 *quartic = t1;
    1429           0 :         fe_sq (quartic, t0);
    1430           0 :         fe_mul(quartic, quartic, x);
    1431             : 
    1432           0 :         i32 *check = t2;
    1433           0 :         fe_0  (check);          int z0 = fe_isequal(x      , check);
    1434           0 :         fe_1  (check);          int p1 = fe_isequal(quartic, check);
    1435           0 :         fe_neg(check, check );  int m1 = fe_isequal(quartic, check);
    1436           0 :         fe_neg(check, sqrtm1);  int ms = fe_isequal(quartic, check);
    1437             : 
    1438             :         // if quartic == -1 or sqrt(-1)
    1439             :         // then  isr = x^((p-1)/4) * sqrt(-1)
    1440             :         // else  isr = x^((p-1)/4)
    1441           0 :         fe_mul(isr, t0, sqrtm1);
    1442           0 :         fe_ccopy(isr, t0, 1 - (m1 | ms));
    1443             : 
    1444           0 :         WIPE_BUFFER(t0);
    1445           0 :         WIPE_BUFFER(t1);
    1446           0 :         WIPE_BUFFER(t2);
    1447           0 :         return p1 | m1 | z0;
    1448             : }
    1449             : 
    1450             : // Inverse in terms of inverse square root.
    1451             : // Requires two additional squarings to get rid of the sign.
    1452             : //
    1453             : //   1/x = x * (+invsqrt(x^2))^2
    1454             : //       = x * (-invsqrt(x^2))^2
    1455             : //
    1456             : // A fully optimised exponentiation by p-1 would save 6 field
    1457             : // multiplications, but it would require more code.
    1458           0 : static void fe_invert(fe out, const fe x)
    1459             : {
    1460             :         fe tmp;
    1461           0 :         fe_sq(tmp, x);
    1462           0 :         invsqrt(tmp, tmp);
    1463           0 :         fe_sq(tmp, tmp);
    1464           0 :         fe_mul(out, tmp, x);
    1465           0 :         WIPE_BUFFER(tmp);
    1466           0 : }
    1467             : 
    1468             : // trim a scalar for scalar multiplication
    1469           0 : void passgen_eddsa_trim_scalar(u8 out[32], const u8 in[32])
    1470             : {
    1471           0 :         COPY(out, in, 32);
    1472           0 :         out[ 0] &= 248;
    1473           0 :         out[31] &= 127;
    1474           0 :         out[31] |= 64;
    1475           0 : }
    1476             : 
    1477             : // get bit from scalar at position i
    1478           0 : static int scalar_bit(const u8 s[32], int i)
    1479             : {
    1480           0 :         if (i < 0) { return 0; } // handle -1 for sliding windows
    1481           0 :         return (s[i>>3] >> (i&7)) & 1;
    1482             : }
    1483             : 
    1484             : ///////////////
    1485             : /// X-25519 /// Taken from SUPERCOP's ref10 implementation.
    1486             : ///////////////
    1487           0 : static void scalarmult(u8 q[32], const u8 scalar[32], const u8 p[32],
    1488             :                        int nb_bits)
    1489             : {
    1490             :         // computes the scalar product
    1491             :         fe x1;
    1492           0 :         fe_frombytes(x1, p);
    1493             : 
    1494             :         // computes the actual scalar product (the result is in x2 and z2)
    1495             :         fe x2, z2, x3, z3, t0, t1;
    1496             :         // Montgomery ladder
    1497             :         // In projective coordinates, to avoid divisions: x = X / Z
    1498             :         // We don't care about the y coordinate, it's only 1 bit of information
    1499           0 :         fe_1(x2);        fe_0(z2); // "zero" point
    1500           0 :         fe_copy(x3, x1); fe_1(z3); // "one"  point
    1501           0 :         int swap = 0;
    1502           0 :         for (int pos = nb_bits-1; pos >= 0; --pos) {
    1503             :                 // constant time conditional swap before ladder step
    1504           0 :                 int b = scalar_bit(scalar, pos);
    1505           0 :                 swap ^= b; // xor trick avoids swapping at the end of the loop
    1506           0 :                 fe_cswap(x2, x3, swap);
    1507           0 :                 fe_cswap(z2, z3, swap);
    1508           0 :                 swap = b;  // anticipates one last swap after the loop
    1509             : 
    1510             :                 // Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3)
    1511             :                 // with differential addition
    1512           0 :                 fe_sub(t0, x3, z3);
    1513           0 :                 fe_sub(t1, x2, z2);
    1514           0 :                 fe_add(x2, x2, z2);
    1515           0 :                 fe_add(z2, x3, z3);
    1516           0 :                 fe_mul(z3, t0, x2);
    1517           0 :                 fe_mul(z2, z2, t1);
    1518           0 :                 fe_sq (t0, t1    );
    1519           0 :                 fe_sq (t1, x2    );
    1520           0 :                 fe_add(x3, z3, z2);
    1521           0 :                 fe_sub(z2, z3, z2);
    1522           0 :                 fe_mul(x2, t1, t0);
    1523           0 :                 fe_sub(t1, t1, t0);
    1524           0 :                 fe_sq (z2, z2    );
    1525           0 :                 fe_mul_small(z3, t1, 121666);
    1526           0 :                 fe_sq (x3, x3    );
    1527           0 :                 fe_add(t0, t0, z3);
    1528           0 :                 fe_mul(z3, x1, z2);
    1529           0 :                 fe_mul(z2, t1, t0);
    1530             :         }
    1531             :         // last swap is necessary to compensate for the xor trick
    1532             :         // Note: after this swap, P3 == P2 + P1.
    1533           0 :         fe_cswap(x2, x3, swap);
    1534           0 :         fe_cswap(z2, z3, swap);
    1535             : 
    1536             :         // normalises the coordinates: x == X / Z
    1537           0 :         fe_invert(z2, z2);
    1538           0 :         fe_mul(x2, x2, z2);
    1539           0 :         fe_tobytes(q, x2);
    1540             : 
    1541           0 :         WIPE_BUFFER(x1);
    1542           0 :         WIPE_BUFFER(x2);  WIPE_BUFFER(z2);  WIPE_BUFFER(t0);
    1543           0 :         WIPE_BUFFER(x3);  WIPE_BUFFER(z3);  WIPE_BUFFER(t1);
    1544           0 : }
    1545             : 
    1546           0 : void passgen_x25519(u8       raw_shared_secret[32],
    1547             :                    const u8 your_secret_key  [32],
    1548             :                    const u8 their_public_key [32])
    1549             : {
    1550             :         // restrict the possible scalar values
    1551             :         u8 e[32];
    1552           0 :         passgen_eddsa_trim_scalar(e, your_secret_key);
    1553           0 :         scalarmult(raw_shared_secret, e, their_public_key, 255);
    1554           0 :         WIPE_BUFFER(e);
    1555           0 : }
    1556             : 
    1557           0 : void passgen_x25519_public_key(u8       public_key[32],
    1558             :                               const u8 secret_key[32])
    1559             : {
    1560             :         static const u8 base_point[32] = {9};
    1561           0 :         passgen_x25519(public_key, secret_key, base_point);
    1562           0 : }
    1563             : 
    1564             : ///////////////////////////
    1565             : /// Arithmetic modulo L ///
    1566             : ///////////////////////////
    1567             : static const u32 L[8] = {
    1568             :         0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de,
    1569             :         0x00000000, 0x00000000, 0x00000000, 0x10000000,
    1570             : };
    1571             : 
    1572             : //  p = a*b + p
    1573           0 : static void multiply(u32 p[16], const u32 a[8], const u32 b[8])
    1574             : {
    1575           0 :         FOR (i, 0, 8) {
    1576           0 :                 u64 carry = 0;
    1577           0 :                 FOR (j, 0, 8) {
    1578           0 :                         carry  += p[i+j] + (u64)a[i] * b[j];
    1579           0 :                         p[i+j]  = (u32)carry;
    1580           0 :                         carry >>= 32;
    1581             :                 }
    1582           0 :                 p[i+8] = (u32)carry;
    1583             :         }
    1584           0 : }
    1585             : 
    1586           0 : static int is_above_l(const u32 x[8])
    1587             : {
    1588             :         // We work with L directly, in a 2's complement encoding
    1589             :         // (-L == ~L + 1)
    1590           0 :         u64 carry = 1;
    1591           0 :         FOR (i, 0, 8) {
    1592           0 :                 carry  += (u64)x[i] + (~L[i] & 0xffffffff);
    1593           0 :                 carry >>= 32;
    1594             :         }
    1595           0 :         return (int)carry; // carry is either 0 or 1
    1596             : }
    1597             : 
    1598             : // Final reduction modulo L, by conditionally removing L.
    1599             : // if x < l     , then r = x
    1600             : // if l <= x 2*l, then r = x-l
    1601             : // otherwise the result will be wrong
    1602           0 : static void remove_l(u32 r[8], const u32 x[8])
    1603             : {
    1604           0 :         u64 carry = (u64)is_above_l(x);
    1605           0 :         u32 mask  = ~(u32)carry + 1; // carry == 0 or 1
    1606           0 :         FOR (i, 0, 8) {
    1607           0 :                 carry += (u64)x[i] + (~L[i] & mask);
    1608           0 :                 r[i]   = (u32)carry;
    1609           0 :                 carry >>= 32;
    1610             :         }
    1611           0 : }
    1612             : 
    1613             : // Full reduction modulo L (Barrett reduction)
    1614           0 : static void mod_l(u8 reduced[32], const u32 x[16])
    1615             : {
    1616             :         static const u32 r[9] = {
    1617             :                 0x0a2c131b,0xed9ce5a3,0x086329a7,0x2106215d,
    1618             :                 0xffffffeb,0xffffffff,0xffffffff,0xffffffff,0xf,
    1619             :         };
    1620             :         // xr = x * r
    1621           0 :         u32 xr[25] = {0};
    1622           0 :         FOR (i, 0, 9) {
    1623           0 :                 u64 carry = 0;
    1624           0 :                 FOR (j, 0, 16) {
    1625           0 :                         carry  += xr[i+j] + (u64)r[i] * x[j];
    1626           0 :                         xr[i+j] = (u32)carry;
    1627           0 :                         carry >>= 32;
    1628             :                 }
    1629           0 :                 xr[i+16] = (u32)carry;
    1630             :         }
    1631             :         // xr = floor(xr / 2^512) * L
    1632             :         // Since the result is guaranteed to be below 2*L,
    1633             :         // it is enough to only compute the first 256 bits.
    1634             :         // The division is performed by saying xr[i+16]. (16 * 32 = 512)
    1635           0 :         ZERO(xr, 8);
    1636           0 :         FOR (i, 0, 8) {
    1637           0 :                 u64 carry = 0;
    1638           0 :                 FOR (j, 0, 8-i) {
    1639           0 :                         carry   += xr[i+j] + (u64)xr[i+16] * L[j];
    1640           0 :                         xr[i+j] = (u32)carry;
    1641           0 :                         carry >>= 32;
    1642             :                 }
    1643             :         }
    1644             :         // xr = x - xr
    1645           0 :         u64 carry = 1;
    1646           0 :         FOR (i, 0, 8) {
    1647           0 :                 carry  += (u64)x[i] + (~xr[i] & 0xffffffff);
    1648           0 :                 xr[i]   = (u32)carry;
    1649           0 :                 carry >>= 32;
    1650             :         }
    1651             :         // Final reduction modulo L (conditional subtraction)
    1652           0 :         remove_l(xr, xr);
    1653           0 :         store32_le_buf(reduced, xr, 8);
    1654             : 
    1655           0 :         WIPE_BUFFER(xr);
    1656           0 : }
    1657             : 
    1658           0 : void passgen_eddsa_reduce(u8 reduced[32], const u8 expanded[64])
    1659             : {
    1660             :         u32 x[16];
    1661           0 :         load32_le_buf(x, expanded, 16);
    1662           0 :         mod_l(reduced, x);
    1663           0 :         WIPE_BUFFER(x);
    1664           0 : }
    1665             : 
    1666             : // r = (a * b) + c
    1667           0 : void passgen_eddsa_mul_add(u8 r[32],
    1668             :                           const u8 a[32], const u8 b[32], const u8 c[32])
    1669             : {
    1670           0 :         u32 A[8];  load32_le_buf(A, a, 8);
    1671           0 :         u32 B[8];  load32_le_buf(B, b, 8);
    1672           0 :         u32 p[16]; load32_le_buf(p, c, 8);  ZERO(p + 8, 8);
    1673           0 :         multiply(p, A, B);
    1674           0 :         mod_l(r, p);
    1675           0 :         WIPE_BUFFER(p);
    1676           0 :         WIPE_BUFFER(A);
    1677           0 :         WIPE_BUFFER(B);
    1678           0 : }
    1679             : 
    1680             : ///////////////
    1681             : /// Ed25519 ///
    1682             : ///////////////
    1683             : 
    1684             : // Point (group element, ge) in a twisted Edwards curve,
    1685             : // in extended projective coordinates.
    1686             : // ge        : x  = X/Z, y  = Y/Z, T  = XY/Z
    1687             : // ge_cached : Yp = X+Y, Ym = X-Y, T2 = T*D2
    1688             : // ge_precomp: Z  = 1
    1689             : typedef struct { fe X;  fe Y;  fe Z; fe T;  } ge;
    1690             : typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached;
    1691             : typedef struct { fe Yp; fe Ym;       fe T2; } ge_precomp;
    1692             : 
    1693           0 : static void ge_zero(ge *p)
    1694             : {
    1695           0 :         fe_0(p->X);
    1696           0 :         fe_1(p->Y);
    1697           0 :         fe_1(p->Z);
    1698           0 :         fe_0(p->T);
    1699           0 : }
    1700             : 
    1701           0 : static void ge_tobytes(u8 s[32], const ge *h)
    1702             : {
    1703             :         fe recip, x, y;
    1704           0 :         fe_invert(recip, h->Z);
    1705           0 :         fe_mul(x, h->X, recip);
    1706           0 :         fe_mul(y, h->Y, recip);
    1707           0 :         fe_tobytes(s, y);
    1708           0 :         s[31] ^= fe_isodd(x) << 7;
    1709             : 
    1710           0 :         WIPE_BUFFER(recip);
    1711           0 :         WIPE_BUFFER(x);
    1712           0 :         WIPE_BUFFER(y);
    1713           0 : }
    1714             : 
    1715             : // h = -s, where s is a point encoded in 32 bytes
    1716             : //
    1717             : // Variable time!  Inputs must not be secret!
    1718             : // => Use only to *check* signatures.
    1719             : //
    1720             : // From the specifications:
    1721             : //   The encoding of s contains y and the sign of x
    1722             : //   x = sqrt((y^2 - 1) / (d*y^2 + 1))
    1723             : // In extended coordinates:
    1724             : //   X = x, Y = y, Z = 1, T = x*y
    1725             : //
    1726             : //    Note that num * den is a square iff num / den is a square
    1727             : //    If num * den is not a square, the point was not on the curve.
    1728             : // From the above:
    1729             : //   Let num =   y^2 - 1
    1730             : //   Let den = d*y^2 + 1
    1731             : //   x = sqrt((y^2 - 1) / (d*y^2 + 1))
    1732             : //   x = sqrt(num / den)
    1733             : //   x = sqrt(num^2 / (num * den))
    1734             : //   x = num * sqrt(1 / (num * den))
    1735             : //
    1736             : // Therefore, we can just compute:
    1737             : //   num =   y^2 - 1
    1738             : //   den = d*y^2 + 1
    1739             : //   isr = invsqrt(num * den)  // abort if not square
    1740             : //   x   = num * isr
    1741             : // Finally, negate x if its sign is not as specified.
    1742           0 : static int ge_frombytes_neg_vartime(ge *h, const u8 s[32])
    1743             : {
    1744           0 :         fe_frombytes(h->Y, s);
    1745           0 :         fe_1(h->Z);
    1746           0 :         fe_sq (h->T, h->Y);        // t =   y^2
    1747           0 :         fe_mul(h->X, h->T, d   );  // x = d*y^2
    1748           0 :         fe_sub(h->T, h->T, h->Z);  // t =   y^2 - 1
    1749           0 :         fe_add(h->X, h->X, h->Z);  // x = d*y^2 + 1
    1750           0 :         fe_mul(h->X, h->T, h->X);  // x = (y^2 - 1) * (d*y^2 + 1)
    1751           0 :         int is_square = invsqrt(h->X, h->X);
    1752           0 :         if (!is_square) {
    1753           0 :                 return -1;             // Not on the curve, abort
    1754             :         }
    1755           0 :         fe_mul(h->X, h->T, h->X);  // x = sqrt((y^2 - 1) / (d*y^2 + 1))
    1756           0 :         if (fe_isodd(h->X) == (s[31] >> 7)) {
    1757           0 :                 fe_neg(h->X, h->X);
    1758             :         }
    1759           0 :         fe_mul(h->T, h->X, h->Y);
    1760           0 :         return 0;
    1761             : }
    1762             : 
    1763           0 : static void ge_cache(ge_cached *c, const ge *p)
    1764             : {
    1765           0 :         fe_add (c->Yp, p->Y, p->X);
    1766           0 :         fe_sub (c->Ym, p->Y, p->X);
    1767           0 :         fe_copy(c->Z , p->Z      );
    1768           0 :         fe_mul (c->T2, p->T, D2  );
    1769           0 : }
    1770             : 
    1771             : // Internal buffers are not wiped! Inputs must not be secret!
    1772             : // => Use only to *check* signatures.
    1773           0 : static void ge_add(ge *s, const ge *p, const ge_cached *q)
    1774             : {
    1775             :         fe a, b;
    1776           0 :         fe_add(a   , p->Y, p->X );
    1777           0 :         fe_sub(b   , p->Y, p->X );
    1778           0 :         fe_mul(a   , a   , q->Yp);
    1779           0 :         fe_mul(b   , b   , q->Ym);
    1780           0 :         fe_add(s->Y, a   , b    );
    1781           0 :         fe_sub(s->X, a   , b    );
    1782             : 
    1783           0 :         fe_add(s->Z, p->Z, p->Z );
    1784           0 :         fe_mul(s->Z, s->Z, q->Z );
    1785           0 :         fe_mul(s->T, p->T, q->T2);
    1786           0 :         fe_add(a   , s->Z, s->T );
    1787           0 :         fe_sub(b   , s->Z, s->T );
    1788             : 
    1789           0 :         fe_mul(s->T, s->X, s->Y);
    1790           0 :         fe_mul(s->X, s->X, b   );
    1791           0 :         fe_mul(s->Y, s->Y, a   );
    1792           0 :         fe_mul(s->Z, a   , b   );
    1793           0 : }
    1794             : 
    1795             : // Internal buffers are not wiped! Inputs must not be secret!
    1796             : // => Use only to *check* signatures.
    1797           0 : static void ge_sub(ge *s, const ge *p, const ge_cached *q)
    1798             : {
    1799             :         ge_cached neg;
    1800           0 :         fe_copy(neg.Ym, q->Yp);
    1801           0 :         fe_copy(neg.Yp, q->Ym);
    1802           0 :         fe_copy(neg.Z , q->Z );
    1803           0 :         fe_neg (neg.T2, q->T2);
    1804           0 :         ge_add(s, p, &neg);
    1805           0 : }
    1806             : 
    1807           0 : static void ge_madd(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
    1808             : {
    1809           0 :         fe_add(a   , p->Y, p->X );
    1810           0 :         fe_sub(b   , p->Y, p->X );
    1811           0 :         fe_mul(a   , a   , q->Yp);
    1812           0 :         fe_mul(b   , b   , q->Ym);
    1813           0 :         fe_add(s->Y, a   , b    );
    1814           0 :         fe_sub(s->X, a   , b    );
    1815             : 
    1816           0 :         fe_add(s->Z, p->Z, p->Z );
    1817           0 :         fe_mul(s->T, p->T, q->T2);
    1818           0 :         fe_add(a   , s->Z, s->T );
    1819           0 :         fe_sub(b   , s->Z, s->T );
    1820             : 
    1821           0 :         fe_mul(s->T, s->X, s->Y);
    1822           0 :         fe_mul(s->X, s->X, b   );
    1823           0 :         fe_mul(s->Y, s->Y, a   );
    1824           0 :         fe_mul(s->Z, a   , b   );
    1825           0 : }
    1826             : 
    1827             : // Internal buffers are not wiped! Inputs must not be secret!
    1828             : // => Use only to *check* signatures.
    1829           0 : static void ge_msub(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
    1830             : {
    1831             :         ge_precomp neg;
    1832           0 :         fe_copy(neg.Ym, q->Yp);
    1833           0 :         fe_copy(neg.Yp, q->Ym);
    1834           0 :         fe_neg (neg.T2, q->T2);
    1835           0 :         ge_madd(s, p, &neg, a, b);
    1836           0 : }
    1837             : 
    1838           0 : static void ge_double(ge *s, const ge *p, ge *q)
    1839             : {
    1840           0 :         fe_sq (q->X, p->X);
    1841           0 :         fe_sq (q->Y, p->Y);
    1842           0 :         fe_sq (q->Z, p->Z);          // qZ = pZ^2
    1843           0 :         fe_mul_small(q->Z, q->Z, 2); // qZ = pZ^2 * 2
    1844           0 :         fe_add(q->T, p->X, p->Y);
    1845           0 :         fe_sq (s->T, q->T);
    1846           0 :         fe_add(q->T, q->Y, q->X);
    1847           0 :         fe_sub(q->Y, q->Y, q->X);
    1848           0 :         fe_sub(q->X, s->T, q->T);
    1849           0 :         fe_sub(q->Z, q->Z, q->Y);
    1850             : 
    1851           0 :         fe_mul(s->X, q->X , q->Z);
    1852           0 :         fe_mul(s->Y, q->T , q->Y);
    1853           0 :         fe_mul(s->Z, q->Y , q->Z);
    1854           0 :         fe_mul(s->T, q->X , q->T);
    1855           0 : }
    1856             : 
    1857             : // 5-bit signed window in cached format (Niels coordinates, Z=1)
    1858             : static const ge_precomp b_window[8] = {
    1859             :         {{25967493,-14356035,29566456,3660896,-12694345,
    1860             :           4014787,27544626,-11754271,-6079156,2047605,},
    1861             :          {-12545711,934262,-2722910,3049990,-727428,
    1862             :           9406986,12720692,5043384,19500929,-15469378,},
    1863             :          {-8738181,4489570,9688441,-14785194,10184609,
    1864             :           -12363380,29287919,11864899,-24514362,-4438546,},},
    1865             :         {{15636291,-9688557,24204773,-7912398,616977,
    1866             :           -16685262,27787600,-14772189,28944400,-1550024,},
    1867             :          {16568933,4717097,-11556148,-1102322,15682896,
    1868             :           -11807043,16354577,-11775962,7689662,11199574,},
    1869             :          {30464156,-5976125,-11779434,-15670865,23220365,
    1870             :           15915852,7512774,10017326,-17749093,-9920357,},},
    1871             :         {{10861363,11473154,27284546,1981175,-30064349,
    1872             :           12577861,32867885,14515107,-15438304,10819380,},
    1873             :          {4708026,6336745,20377586,9066809,-11272109,
    1874             :           6594696,-25653668,12483688,-12668491,5581306,},
    1875             :          {19563160,16186464,-29386857,4097519,10237984,
    1876             :           -4348115,28542350,13850243,-23678021,-15815942,},},
    1877             :         {{5153746,9909285,1723747,-2777874,30523605,
    1878             :           5516873,19480852,5230134,-23952439,-15175766,},
    1879             :          {-30269007,-3463509,7665486,10083793,28475525,
    1880             :           1649722,20654025,16520125,30598449,7715701,},
    1881             :          {28881845,14381568,9657904,3680757,-20181635,
    1882             :           7843316,-31400660,1370708,29794553,-1409300,},},
    1883             :         {{-22518993,-6692182,14201702,-8745502,-23510406,
    1884             :           8844726,18474211,-1361450,-13062696,13821877,},
    1885             :          {-6455177,-7839871,3374702,-4740862,-27098617,
    1886             :           -10571707,31655028,-7212327,18853322,-14220951,},
    1887             :          {4566830,-12963868,-28974889,-12240689,-7602672,
    1888             :           -2830569,-8514358,-10431137,2207753,-3209784,},},
    1889             :         {{-25154831,-4185821,29681144,7868801,-6854661,
    1890             :           -9423865,-12437364,-663000,-31111463,-16132436,},
    1891             :          {25576264,-2703214,7349804,-11814844,16472782,
    1892             :           9300885,3844789,15725684,171356,6466918,},
    1893             :          {23103977,13316479,9739013,-16149481,817875,
    1894             :           -15038942,8965339,-14088058,-30714912,16193877,},},
    1895             :         {{-33521811,3180713,-2394130,14003687,-16903474,
    1896             :           -16270840,17238398,4729455,-18074513,9256800,},
    1897             :          {-25182317,-4174131,32336398,5036987,-21236817,
    1898             :           11360617,22616405,9761698,-19827198,630305,},
    1899             :          {-13720693,2639453,-24237460,-7406481,9494427,
    1900             :           -5774029,-6554551,-15960994,-2449256,-14291300,},},
    1901             :         {{-3151181,-5046075,9282714,6866145,-31907062,
    1902             :           -863023,-18940575,15033784,25105118,-7894876,},
    1903             :          {-24326370,15950226,-31801215,-14592823,-11662737,
    1904             :           -5090925,1573892,-2625887,2198790,-15804619,},
    1905             :          {-3099351,10324967,-2241613,7453183,-5446979,
    1906             :           -2735503,-13812022,-16236442,-32461234,-12290683,},},
    1907             : };
    1908             : 
    1909             : // Incremental sliding windows (left to right)
    1910             : // Based on Roberto Maria Avanzi[2005]
    1911             : typedef struct {
    1912             :         i16 next_index; // position of the next signed digit
    1913             :         i8  next_digit; // next signed digit (odd number below 2^window_width)
    1914             :         u8  next_check; // point at which we must check for a new window
    1915             : } slide_ctx;
    1916             : 
    1917           0 : static void slide_init(slide_ctx *ctx, const u8 scalar[32])
    1918             : {
    1919             :         // scalar is guaranteed to be below L, either because we checked (s),
    1920             :         // or because we reduced it modulo L (h_ram). L is under 2^253, so
    1921             :         // so bits 253 to 255 are guaranteed to be zero. No need to test them.
    1922             :         //
    1923             :         // Note however that L is very close to 2^252, so bit 252 is almost
    1924             :         // always zero.  If we were to start at bit 251, the tests wouldn't
    1925             :         // catch the off-by-one error (constructing one that does would be
    1926             :         // prohibitively expensive).
    1927             :         //
    1928             :         // We should still check bit 252, though.
    1929           0 :         int i = 252;
    1930           0 :         while (i > 0 && scalar_bit(scalar, i) == 0) {
    1931           0 :                 i--;
    1932             :         }
    1933           0 :         ctx->next_check = (u8)(i + 1);
    1934           0 :         ctx->next_index = -1;
    1935           0 :         ctx->next_digit = -1;
    1936           0 : }
    1937             : 
    1938           0 : static int slide_step(slide_ctx *ctx, int width, int i, const u8 scalar[32])
    1939             : {
    1940           0 :         if (i == ctx->next_check) {
    1941           0 :                 if (scalar_bit(scalar, i) == scalar_bit(scalar, i - 1)) {
    1942           0 :                         ctx->next_check--;
    1943             :                 } else {
    1944             :                         // compute digit of next window
    1945           0 :                         int w = MIN(width, i + 1);
    1946           0 :                         int v = -(scalar_bit(scalar, i) << (w-1));
    1947           0 :                         FOR_T (int, j, 0, w-1) {
    1948           0 :                                 v += scalar_bit(scalar, i-(w-1)+j) << j;
    1949             :                         }
    1950           0 :                         v += scalar_bit(scalar, i-w);
    1951           0 :                         int lsb = v & (~v + 1); // smallest bit of v
    1952           0 :                         int s   =               // log2(lsb)
    1953           0 :                                 (((lsb & 0xAA) != 0) << 0) |
    1954           0 :                                 (((lsb & 0xCC) != 0) << 1) |
    1955           0 :                                 (((lsb & 0xF0) != 0) << 2);
    1956           0 :                         ctx->next_index  = (i16)(i-(w-1)+s);
    1957           0 :                         ctx->next_digit  = (i8) (v >> s   );
    1958           0 :                         ctx->next_check -= (u8) w;
    1959             :                 }
    1960             :         }
    1961           0 :         return i == ctx->next_index ? ctx->next_digit: 0;
    1962             : }
    1963             : 
    1964             : #define P_W_WIDTH 3 // Affects the size of the stack
    1965             : #define B_W_WIDTH 5 // Affects the size of the binary
    1966             : #define P_W_SIZE  (1<<(P_W_WIDTH-2))
    1967             : 
    1968           0 : int passgen_eddsa_check_equation(const u8 signature[64], const u8 public_key[32],
    1969             :                                 const u8 h[32])
    1970             : {
    1971             :         ge minus_A; // -public_key
    1972             :         ge minus_R; // -first_half_of_signature
    1973           0 :         const u8 *s = signature + 32;
    1974             : 
    1975             :         // Check that A and R are on the curve
    1976             :         // Check that 0 <= S < L (prevents malleability)
    1977             :         // *Allow* non-cannonical encoding for A and R
    1978             :         {
    1979             :                 u32 s32[8];
    1980           0 :                 load32_le_buf(s32, s, 8);
    1981           0 :                 if (ge_frombytes_neg_vartime(&minus_A, public_key) ||
    1982           0 :                     ge_frombytes_neg_vartime(&minus_R, signature)  ||
    1983           0 :                     is_above_l(s32)) {
    1984           0 :                         return -1;
    1985             :                 }
    1986             :         }
    1987             : 
    1988             :         // look-up table for minus_A
    1989             :         ge_cached lutA[P_W_SIZE];
    1990             :         {
    1991             :                 ge minus_A2, tmp;
    1992           0 :                 ge_double(&minus_A2, &minus_A, &tmp);
    1993           0 :                 ge_cache(&lutA[0], &minus_A);
    1994           0 :                 FOR (i, 1, P_W_SIZE) {
    1995           0 :                         ge_add(&tmp, &minus_A2, &lutA[i-1]);
    1996           0 :                         ge_cache(&lutA[i], &tmp);
    1997             :                 }
    1998             :         }
    1999             : 
    2000             :         // sum = [s]B - [h]A
    2001             :         // Merged double and add ladder, fused with sliding
    2002           0 :         slide_ctx h_slide;  slide_init(&h_slide, h);
    2003           0 :         slide_ctx s_slide;  slide_init(&s_slide, s);
    2004           0 :         int i = MAX(h_slide.next_check, s_slide.next_check);
    2005           0 :         ge *sum = &minus_A; // reuse minus_A for the sum
    2006           0 :         ge_zero(sum);
    2007           0 :         while (i >= 0) {
    2008             :                 ge tmp;
    2009           0 :                 ge_double(sum, sum, &tmp);
    2010           0 :                 int h_digit = slide_step(&h_slide, P_W_WIDTH, i, h);
    2011           0 :                 int s_digit = slide_step(&s_slide, B_W_WIDTH, i, s);
    2012           0 :                 if (h_digit > 0) { ge_add(sum, sum, &lutA[ h_digit / 2]); }
    2013           0 :                 if (h_digit < 0) { ge_sub(sum, sum, &lutA[-h_digit / 2]); }
    2014             :                 fe t1, t2;
    2015           0 :                 if (s_digit > 0) { ge_madd(sum, sum, b_window +  s_digit/2, t1, t2); }
    2016           0 :                 if (s_digit < 0) { ge_msub(sum, sum, b_window + -s_digit/2, t1, t2); }
    2017           0 :                 i--;
    2018             :         }
    2019             : 
    2020             :         // Compare [8](sum-R) and the zero point
    2021             :         // The multiplication by 8 eliminates any low-order component
    2022             :         // and ensures consistency with batched verification.
    2023             :         ge_cached cached;
    2024             :         u8 check[32];
    2025             :         static const u8 zero_point[32] = {1}; // Point of order 1
    2026           0 :         ge_cache(&cached, &minus_R);
    2027           0 :         ge_add(sum, sum, &cached);
    2028           0 :         ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
    2029           0 :         ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
    2030           0 :         ge_double(sum, sum, &minus_R); // reuse minus_R as temporary
    2031           0 :         ge_tobytes(check, sum);
    2032           0 :         return passgen_verify32(check, zero_point);
    2033             : }
    2034             : 
    2035             : // 5-bit signed comb in cached format (Niels coordinates, Z=1)
    2036             : static const ge_precomp b_comb_low[8] = {
    2037             :         {{-6816601,-2324159,-22559413,124364,18015490,
    2038             :           8373481,19993724,1979872,-18549925,9085059,},
    2039             :          {10306321,403248,14839893,9633706,8463310,
    2040             :           -8354981,-14305673,14668847,26301366,2818560,},
    2041             :          {-22701500,-3210264,-13831292,-2927732,-16326337,
    2042             :           -14016360,12940910,177905,12165515,-2397893,},},
    2043             :         {{-12282262,-7022066,9920413,-3064358,-32147467,
    2044             :           2927790,22392436,-14852487,2719975,16402117,},
    2045             :          {-7236961,-4729776,2685954,-6525055,-24242706,
    2046             :           -15940211,-6238521,14082855,10047669,12228189,},
    2047             :          {-30495588,-12893761,-11161261,3539405,-11502464,
    2048             :           16491580,-27286798,-15030530,-7272871,-15934455,},},
    2049             :         {{17650926,582297,-860412,-187745,-12072900,
    2050             :           -10683391,-20352381,15557840,-31072141,-5019061,},
    2051             :          {-6283632,-2259834,-4674247,-4598977,-4089240,
    2052             :           12435688,-31278303,1060251,6256175,10480726,},
    2053             :          {-13871026,2026300,-21928428,-2741605,-2406664,
    2054             :           -8034988,7355518,15733500,-23379862,7489131,},},
    2055             :         {{6883359,695140,23196907,9644202,-33430614,
    2056             :           11354760,-20134606,6388313,-8263585,-8491918,},
    2057             :          {-7716174,-13605463,-13646110,14757414,-19430591,
    2058             :           -14967316,10359532,-11059670,-21935259,12082603,},
    2059             :          {-11253345,-15943946,10046784,5414629,24840771,
    2060             :           8086951,-6694742,9868723,15842692,-16224787,},},
    2061             :         {{9639399,11810955,-24007778,-9320054,3912937,
    2062             :           -9856959,996125,-8727907,-8919186,-14097242,},
    2063             :          {7248867,14468564,25228636,-8795035,14346339,
    2064             :           8224790,6388427,-7181107,6468218,-8720783,},
    2065             :          {15513115,15439095,7342322,-10157390,18005294,
    2066             :           -7265713,2186239,4884640,10826567,7135781,},},
    2067             :         {{-14204238,5297536,-5862318,-6004934,28095835,
    2068             :           4236101,-14203318,1958636,-16816875,3837147,},
    2069             :          {-5511166,-13176782,-29588215,12339465,15325758,
    2070             :           -15945770,-8813185,11075932,-19608050,-3776283,},
    2071             :          {11728032,9603156,-4637821,-5304487,-7827751,
    2072             :           2724948,31236191,-16760175,-7268616,14799772,},},
    2073             :         {{-28842672,4840636,-12047946,-9101456,-1445464,
    2074             :           381905,-30977094,-16523389,1290540,12798615,},
    2075             :          {27246947,-10320914,14792098,-14518944,5302070,
    2076             :           -8746152,-3403974,-4149637,-27061213,10749585,},
    2077             :          {25572375,-6270368,-15353037,16037944,1146292,
    2078             :           32198,23487090,9585613,24714571,-1418265,},},
    2079             :         {{19844825,282124,-17583147,11004019,-32004269,
    2080             :           -2716035,6105106,-1711007,-21010044,14338445,},
    2081             :          {8027505,8191102,-18504907,-12335737,25173494,
    2082             :           -5923905,15446145,7483684,-30440441,10009108,},
    2083             :          {-14134701,-4174411,10246585,-14677495,33553567,
    2084             :           -14012935,23366126,15080531,-7969992,7663473,},},
    2085             : };
    2086             : 
    2087             : static const ge_precomp b_comb_high[8] = {
    2088             :         {{33055887,-4431773,-521787,6654165,951411,
    2089             :           -6266464,-5158124,6995613,-5397442,-6985227,},
    2090             :          {4014062,6967095,-11977872,3960002,8001989,
    2091             :           5130302,-2154812,-1899602,-31954493,-16173976,},
    2092             :          {16271757,-9212948,23792794,731486,-25808309,
    2093             :           -3546396,6964344,-4767590,10976593,10050757,},},
    2094             :         {{2533007,-4288439,-24467768,-12387405,-13450051,
    2095             :           14542280,12876301,13893535,15067764,8594792,},
    2096             :          {20073501,-11623621,3165391,-13119866,13188608,
    2097             :           -11540496,-10751437,-13482671,29588810,2197295,},
    2098             :          {-1084082,11831693,6031797,14062724,14748428,
    2099             :           -8159962,-20721760,11742548,31368706,13161200,},},
    2100             :         {{2050412,-6457589,15321215,5273360,25484180,
    2101             :           124590,-18187548,-7097255,-6691621,-14604792,},
    2102             :          {9938196,2162889,-6158074,-1711248,4278932,
    2103             :           -2598531,-22865792,-7168500,-24323168,11746309,},
    2104             :          {-22691768,-14268164,5965485,9383325,20443693,
    2105             :           5854192,28250679,-1381811,-10837134,13717818,},},
    2106             :         {{-8495530,16382250,9548884,-4971523,-4491811,
    2107             :           -3902147,6182256,-12832479,26628081,10395408,},
    2108             :          {27329048,-15853735,7715764,8717446,-9215518,
    2109             :           -14633480,28982250,-5668414,4227628,242148,},
    2110             :          {-13279943,-7986904,-7100016,8764468,-27276630,
    2111             :           3096719,29678419,-9141299,3906709,11265498,},},
    2112             :         {{11918285,15686328,-17757323,-11217300,-27548967,
    2113             :           4853165,-27168827,6807359,6871949,-1075745,},
    2114             :          {-29002610,13984323,-27111812,-2713442,28107359,
    2115             :           -13266203,6155126,15104658,3538727,-7513788,},
    2116             :          {14103158,11233913,-33165269,9279850,31014152,
    2117             :           4335090,-1827936,4590951,13960841,12787712,},},
    2118             :         {{1469134,-16738009,33411928,13942824,8092558,
    2119             :           -8778224,-11165065,1437842,22521552,-2792954,},
    2120             :          {31352705,-4807352,-25327300,3962447,12541566,
    2121             :           -9399651,-27425693,7964818,-23829869,5541287,},
    2122             :          {-25732021,-6864887,23848984,3039395,-9147354,
    2123             :           6022816,-27421653,10590137,25309915,-1584678,},},
    2124             :         {{-22951376,5048948,31139401,-190316,-19542447,
    2125             :           -626310,-17486305,-16511925,-18851313,-12985140,},
    2126             :          {-9684890,14681754,30487568,7717771,-10829709,
    2127             :           9630497,30290549,-10531496,-27798994,-13812825,},
    2128             :          {5827835,16097107,-24501327,12094619,7413972,
    2129             :           11447087,28057551,-1793987,-14056981,4359312,},},
    2130             :         {{26323183,2342588,-21887793,-1623758,-6062284,
    2131             :           2107090,-28724907,9036464,-19618351,-13055189,},
    2132             :          {-29697200,14829398,-4596333,14220089,-30022969,
    2133             :           2955645,12094100,-13693652,-5941445,7047569,},
    2134             :          {-3201977,14413268,-12058324,-16417589,-9035655,
    2135             :           -7224648,9258160,1399236,30397584,-5684634,},},
    2136             : };
    2137             : 
    2138           0 : static void lookup_add(ge *p, ge_precomp *tmp_c, fe tmp_a, fe tmp_b,
    2139             :                        const ge_precomp comb[8], const u8 scalar[32], int i)
    2140             : {
    2141           0 :         u8 teeth = (u8)((scalar_bit(scalar, i)          ) +
    2142           0 :                         (scalar_bit(scalar, i + 32) << 1) +
    2143           0 :                         (scalar_bit(scalar, i + 64) << 2) +
    2144           0 :                         (scalar_bit(scalar, i + 96) << 3));
    2145           0 :         u8 high  = teeth >> 3;
    2146           0 :         u8 index = (teeth ^ (high - 1)) & 7;
    2147           0 :         FOR (j, 0, 8) {
    2148           0 :                 i32 select = 1 & (((j ^ index) - 1) >> 8);
    2149           0 :                 fe_ccopy(tmp_c->Yp, comb[j].Yp, select);
    2150           0 :                 fe_ccopy(tmp_c->Ym, comb[j].Ym, select);
    2151           0 :                 fe_ccopy(tmp_c->T2, comb[j].T2, select);
    2152             :         }
    2153           0 :         fe_neg(tmp_a, tmp_c->T2);
    2154           0 :         fe_cswap(tmp_c->T2, tmp_a    , high ^ 1);
    2155           0 :         fe_cswap(tmp_c->Yp, tmp_c->Ym, high ^ 1);
    2156           0 :         ge_madd(p, p, tmp_c, tmp_a, tmp_b);
    2157           0 : }
    2158             : 
    2159             : // p = [scalar]B, where B is the base point
    2160           0 : static void ge_scalarmult_base(ge *p, const u8 scalar[32])
    2161             : {
    2162             :         // twin 4-bits signed combs, from Mike Hamburg's
    2163             :         // Fast and compact elliptic-curve cryptography (2012)
    2164             :         // 1 / 2 modulo L
    2165             :         static const u8 half_mod_L[32] = {
    2166             :                 247,233,122,46,141,49,9,44,107,206,123,81,239,124,111,10,
    2167             :                 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8,
    2168             :         };
    2169             :         // (2^256 - 1) / 2 modulo L
    2170             :         static const u8 half_ones[32] = {
    2171             :                 142,74,204,70,186,24,118,107,184,231,190,57,250,173,119,99,
    2172             :                 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,7,
    2173             :         };
    2174             : 
    2175             :         // All bits set form: 1 means 1, 0 means -1
    2176             :         u8 s_scalar[32];
    2177           0 :         passgen_eddsa_mul_add(s_scalar, scalar, half_mod_L, half_ones);
    2178             : 
    2179             :         // Double and add ladder
    2180             :         fe tmp_a, tmp_b;  // temporaries for addition
    2181             :         ge_precomp tmp_c; // temporary for comb lookup
    2182             :         ge tmp_d;         // temporary for doubling
    2183           0 :         fe_1(tmp_c.Yp);
    2184           0 :         fe_1(tmp_c.Ym);
    2185           0 :         fe_0(tmp_c.T2);
    2186             : 
    2187             :         // Save a double on the first iteration
    2188           0 :         ge_zero(p);
    2189           0 :         lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, 31);
    2190           0 :         lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, 31+128);
    2191             :         // Regular double & add for the rest
    2192           0 :         for (int i = 30; i >= 0; i--) {
    2193           0 :                 ge_double(p, p, &tmp_d);
    2194           0 :                 lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, i);
    2195           0 :                 lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, i+128);
    2196             :         }
    2197             :         // Note: we could save one addition at the end if we assumed the
    2198             :         // scalar fit in 252 bits.  Which it does in practice if it is
    2199             :         // selected at random.  However, non-random, non-hashed scalars
    2200             :         // *can* overflow 252 bits in practice.  Better account for that
    2201             :         // than leaving that kind of subtle corner case.
    2202             : 
    2203           0 :         WIPE_BUFFER(tmp_a);  WIPE_CTX(&tmp_d);
    2204           0 :         WIPE_BUFFER(tmp_b);  WIPE_CTX(&tmp_c);
    2205           0 :         WIPE_BUFFER(s_scalar);
    2206           0 : }
    2207             : 
    2208           0 : void passgen_eddsa_scalarbase(u8 point[32], const u8 scalar[32])
    2209             : {
    2210             :         ge P;
    2211           0 :         ge_scalarmult_base(&P, scalar);
    2212           0 :         ge_tobytes(point, &P);
    2213           0 :         WIPE_CTX(&P);
    2214           0 : }
    2215             : 
    2216           0 : void passgen_eddsa_key_pair(u8 secret_key[64], u8 public_key[32], u8 seed[32])
    2217             : {
    2218             :         // To allow overlaps, observable writes happen in this order:
    2219             :         // 1. seed
    2220             :         // 2. secret_key
    2221             :         // 3. public_key
    2222             :         u8 a[64];
    2223           0 :         COPY(a, seed, 32);
    2224           0 :         passgen_wipe(seed, 32);
    2225           0 :         COPY(secret_key, a, 32);
    2226           0 :         passgen_blake2b(a, 64, a, 32);
    2227           0 :         passgen_eddsa_trim_scalar(a, a);
    2228           0 :         passgen_eddsa_scalarbase(secret_key + 32, a);
    2229           0 :         COPY(public_key, secret_key + 32, 32);
    2230           0 :         WIPE_BUFFER(a);
    2231           0 : }
    2232             : 
    2233           0 : static void hash_reduce(u8 h[32],
    2234             :                         const u8 *a, size_t a_size,
    2235             :                         const u8 *b, size_t b_size,
    2236             :                         const u8 *c, size_t c_size)
    2237             : {
    2238             :         u8 hash[64];
    2239             :         passgen_blake2b_ctx ctx;
    2240           0 :         passgen_blake2b_init  (&ctx, 64);
    2241           0 :         passgen_blake2b_update(&ctx, a, a_size);
    2242           0 :         passgen_blake2b_update(&ctx, b, b_size);
    2243           0 :         passgen_blake2b_update(&ctx, c, c_size);
    2244           0 :         passgen_blake2b_final (&ctx, hash);
    2245           0 :         passgen_eddsa_reduce(h, hash);
    2246           0 : }
    2247             : 
    2248             : // Digital signature of a message with from a secret key.
    2249             : //
    2250             : // The secret key comprises two parts:
    2251             : // - The seed that generates the key (secret_key[ 0..31])
    2252             : // - The public key                  (secret_key[32..63])
    2253             : //
    2254             : // The seed and the public key are bundled together to make sure users
    2255             : // don't use mismatched seeds and public keys, which would instantly
    2256             : // leak the secret scalar and allow forgeries (allowing this to happen
    2257             : // has resulted in critical vulnerabilities in the wild).
    2258             : //
    2259             : // The seed is hashed to derive the secret scalar and a secret prefix.
    2260             : // The sole purpose of the prefix is to generate a secret random nonce.
    2261             : // The properties of that nonce must be as follows:
    2262             : // - Unique: we need a different one for each message.
    2263             : // - Secret: third parties must not be able to predict it.
    2264             : // - Random: any detectable bias would break all security.
    2265             : //
    2266             : // There are two ways to achieve these properties.  The obvious one is
    2267             : // to simply generate a random number.  Here that would be a parameter
    2268             : // (Monocypher doesn't have an RNG).  It works, but then users may reuse
    2269             : // the nonce by accident, which _also_ leaks the secret scalar and
    2270             : // allows forgeries.  This has happened in the wild too.
    2271             : //
    2272             : // This is no good, so instead we generate that nonce deterministically
    2273             : // by reducing modulo L a hash of the secret prefix and the message.
    2274             : // The secret prefix makes the nonce unpredictable, the message makes it
    2275             : // unique, and the hash/reduce removes all bias.
    2276             : //
    2277             : // The cost of that safety is hashing the message twice.  If that cost
    2278             : // is unacceptable, there are two alternatives:
    2279             : //
    2280             : // - Signing a hash of the message instead of the message itself.  This
    2281             : //   is fine as long as the hash is collision resistant. It is not
    2282             : //   compatible with existing "pure" signatures, but at least it's safe.
    2283             : //
    2284             : // - Using a random nonce.  Please exercise **EXTREME CAUTION** if you
    2285             : //   ever do that.  It is absolutely **critical** that the nonce is
    2286             : //   really an unbiased random number between 0 and L-1, never reused,
    2287             : //   and wiped immediately.
    2288             : //
    2289             : //   To lower the likelihood of complete catastrophe if the RNG is
    2290             : //   either flawed or misused, you can hash the RNG output together with
    2291             : //   the secret prefix and the beginning of the message, and use the
    2292             : //   reduction of that hash instead of the RNG output itself.  It's not
    2293             : //   foolproof (you'd need to hash the whole message) but it helps.
    2294             : //
    2295             : // Signing a message involves the following operations:
    2296             : //
    2297             : //   scalar, prefix = HASH(secret_key)
    2298             : //   r              = HASH(prefix || message) % L
    2299             : //   R              = [r]B
    2300             : //   h              = HASH(R || public_key || message) % L
    2301             : //   S              = ((h * a) + r) % L
    2302             : //   signature      = R || S
    2303           0 : void passgen_eddsa_sign(u8 signature [64], const u8 secret_key[64],
    2304             :                        const u8 *message, size_t message_size)
    2305             : {
    2306             :         u8 a[64];  // secret scalar and prefix
    2307             :         u8 r[32];  // secret deterministic "random" nonce
    2308             :         u8 h[32];  // publically verifiable hash of the message (not wiped)
    2309             :         u8 R[32];  // first half of the signature (allows overlapping inputs)
    2310             : 
    2311           0 :         passgen_blake2b(a, 64, secret_key, 32);
    2312           0 :         passgen_eddsa_trim_scalar(a, a);
    2313           0 :         hash_reduce(r, a + 32, 32, message, message_size, 0, 0);
    2314           0 :         passgen_eddsa_scalarbase(R, r);
    2315           0 :         hash_reduce(h, R, 32, secret_key + 32, 32, message, message_size);
    2316           0 :         COPY(signature, R, 32);
    2317           0 :         passgen_eddsa_mul_add(signature + 32, h, a, r);
    2318             : 
    2319           0 :         WIPE_BUFFER(a);
    2320           0 :         WIPE_BUFFER(r);
    2321           0 : }
    2322             : 
    2323             : // To check the signature R, S of the message M with the public key A,
    2324             : // there are 3 steps:
    2325             : //
    2326             : //   compute h = HASH(R || A || message) % L
    2327             : //   check that A is on the curve.
    2328             : //   check that R == [s]B - [h]A
    2329             : //
    2330             : // The last two steps are done in passgen_eddsa_check_equation()
    2331           0 : int passgen_eddsa_check(const u8  signature[64], const u8 public_key[32],
    2332             :                        const u8 *message, size_t message_size)
    2333             : {
    2334             :         u8 h[32];
    2335           0 :         hash_reduce(h, signature, 32, public_key, 32, message, message_size);
    2336           0 :         return passgen_eddsa_check_equation(signature, public_key, h);
    2337             : }
    2338             : 
    2339             : /////////////////////////
    2340             : /// EdDSA <--> X25519 ///
    2341             : /////////////////////////
    2342           0 : void passgen_eddsa_to_x25519(u8 x25519[32], const u8 eddsa[32])
    2343             : {
    2344             :         // (u, v) = ((1+y)/(1-y), sqrt(-486664)*u/x)
    2345             :         // Only converting y to u, the sign of x is ignored.
    2346             :         fe t1, t2;
    2347           0 :         fe_frombytes(t2, eddsa);
    2348           0 :         fe_add(t1, fe_one, t2);
    2349           0 :         fe_sub(t2, fe_one, t2);
    2350           0 :         fe_invert(t2, t2);
    2351           0 :         fe_mul(t1, t1, t2);
    2352           0 :         fe_tobytes(x25519, t1);
    2353           0 :         WIPE_BUFFER(t1);
    2354           0 :         WIPE_BUFFER(t2);
    2355           0 : }
    2356             : 
    2357           0 : void passgen_x25519_to_eddsa(u8 eddsa[32], const u8 x25519[32])
    2358             : {
    2359             :         // (x, y) = (sqrt(-486664)*u/v, (u-1)/(u+1))
    2360             :         // Only converting u to y, x is assumed positive.
    2361             :         fe t1, t2;
    2362           0 :         fe_frombytes(t2, x25519);
    2363           0 :         fe_sub(t1, t2, fe_one);
    2364           0 :         fe_add(t2, t2, fe_one);
    2365           0 :         fe_invert(t2, t2);
    2366           0 :         fe_mul(t1, t1, t2);
    2367           0 :         fe_tobytes(eddsa, t1);
    2368           0 :         WIPE_BUFFER(t1);
    2369           0 :         WIPE_BUFFER(t2);
    2370           0 : }
    2371             : 
    2372             : /////////////////////////////////////////////
    2373             : /// Dirty ephemeral public key generation ///
    2374             : /////////////////////////////////////////////
    2375             : 
    2376             : // Those functions generates a public key, *without* clearing the
    2377             : // cofactor.  Sending that key over the network leaks 3 bits of the
    2378             : // private key.  Use only to generate ephemeral keys that will be hidden
    2379             : // with passgen_curve_to_hidden().
    2380             : //
    2381             : // The public key is otherwise compatible with passgen_x25519(), which
    2382             : // properly clears the cofactor.
    2383             : //
    2384             : // Note that the distribution of the resulting public keys is almost
    2385             : // uniform.  Flipping the sign of the v coordinate (not provided by this
    2386             : // function), covers the entire key space almost perfectly, where
    2387             : // "almost" means a 2^-128 bias (undetectable).  This uniformity is
    2388             : // needed to ensure the proper randomness of the resulting
    2389             : // representatives (once we apply passgen_curve_to_hidden()).
    2390             : //
    2391             : // Recall that Curve25519 has order C = 2^255 + e, with e < 2^128 (not
    2392             : // to be confused with the prime order of the main subgroup, L, which is
    2393             : // 8 times less than that).
    2394             : //
    2395             : // Generating all points would require us to multiply a point of order C
    2396             : // (the base point plus any point of order 8) by all scalars from 0 to
    2397             : // C-1.  Clamping limits us to scalars between 2^254 and 2^255 - 1. But
    2398             : // by negating the resulting point at random, we also cover scalars from
    2399             : // -2^255 + 1 to -2^254 (which modulo C is congruent to e+1 to 2^254 + e).
    2400             : //
    2401             : // In practice:
    2402             : // - Scalars from 0         to e + 1     are never generated
    2403             : // - Scalars from 2^255     to 2^255 + e are never generated
    2404             : // - Scalars from 2^254 + 1 to 2^254 + e are generated twice
    2405             : //
    2406             : // Since e < 2^128, detecting this bias requires observing over 2^100
    2407             : // representatives from a given source (this will never happen), *and*
    2408             : // recovering enough of the private key to determine that they do, or do
    2409             : // not, belong to the biased set (this practically requires solving
    2410             : // discrete logarithm, which is conjecturally intractable).
    2411             : //
    2412             : // In practice, this means the bias is impossible to detect.
    2413             : 
    2414             : // s + (x*L) % 8*L
    2415             : // Guaranteed to fit in 256 bits iff s fits in 255 bits.
    2416             : //   L             < 2^253
    2417             : //   x%8           < 2^3
    2418             : //   L * (x%8)     < 2^255
    2419             : //   s             < 2^255
    2420             : //   s + L * (x%8) < 2^256
    2421           0 : static void add_xl(u8 s[32], u8 x)
    2422             : {
    2423           0 :         u64 mod8  = x & 7;
    2424           0 :         u64 carry = 0;
    2425           0 :         FOR (i , 0, 8) {
    2426           0 :                 carry = carry + load32_le(s + 4*i) + L[i] * mod8;
    2427           0 :                 store32_le(s + 4*i, (u32)carry);
    2428           0 :                 carry >>= 32;
    2429             :         }
    2430           0 : }
    2431             : 
    2432             : // "Small" dirty ephemeral key.
    2433             : // Use if you need to shrink the size of the binary, and can afford to
    2434             : // slow down by a factor of two (compared to the fast version)
    2435             : //
    2436             : // This version works by decoupling the cofactor from the main factor.
    2437             : //
    2438             : // - The trimmed scalar determines the main factor
    2439             : // - The clamped bits of the scalar determine the cofactor.
    2440             : //
    2441             : // Cofactor and main factor are combined into a single scalar, which is
    2442             : // then multiplied by a point of order 8*L (unlike the base point, which
    2443             : // has prime order).  That "dirty" base point is the addition of the
    2444             : // regular base point (9), and a point of order 8.
    2445           0 : void passgen_x25519_dirty_small(u8 public_key[32], const u8 secret_key[32])
    2446             : {
    2447             :         // Base point of order 8*L
    2448             :         // Raw scalar multiplication with it does not clear the cofactor,
    2449             :         // and the resulting public key will reveal 3 bits of the scalar.
    2450             :         //
    2451             :         // The low order component of this base point  has been chosen
    2452             :         // to yield the same results as passgen_x25519_dirty_fast().
    2453             :         static const u8 dirty_base_point[32] = {
    2454             :                 0xd8, 0x86, 0x1a, 0xa2, 0x78, 0x7a, 0xd9, 0x26,
    2455             :                 0x8b, 0x74, 0x74, 0xb6, 0x82, 0xe3, 0xbe, 0xc3,
    2456             :                 0xce, 0x36, 0x9a, 0x1e, 0x5e, 0x31, 0x47, 0xa2,
    2457             :                 0x6d, 0x37, 0x7c, 0xfd, 0x20, 0xb5, 0xdf, 0x75,
    2458             :         };
    2459             :         // separate the main factor & the cofactor of the scalar
    2460             :         u8 scalar[32];
    2461           0 :         passgen_eddsa_trim_scalar(scalar, secret_key);
    2462             : 
    2463             :         // Separate the main factor and the cofactor
    2464             :         //
    2465             :         // The scalar is trimmed, so its cofactor is cleared.  The three
    2466             :         // least significant bits however still have a main factor.  We must
    2467             :         // remove it for X25519 compatibility.
    2468             :         //
    2469             :         //   cofactor = lsb * L            (modulo 8*L)
    2470             :         //   combined = scalar + cofactor  (modulo 8*L)
    2471           0 :         add_xl(scalar, secret_key[0]);
    2472           0 :         scalarmult(public_key, scalar, dirty_base_point, 256);
    2473           0 :         WIPE_BUFFER(scalar);
    2474           0 : }
    2475             : 
    2476             : // Select low order point
    2477             : // We're computing the [cofactor]lop scalar multiplication, where:
    2478             : //
    2479             : //   cofactor = tweak & 7.
    2480             : //   lop      = (lop_x, lop_y)
    2481             : //   lop_x    = sqrt((sqrt(d + 1) + 1) / d)
    2482             : //   lop_y    = -lop_x * sqrtm1
    2483             : //
    2484             : // The low order point has order 8. There are 4 such points.  We've
    2485             : // chosen the one whose both coordinates are positive (below p/2).
    2486             : // The 8 low order points are as follows:
    2487             : //
    2488             : // [0]lop = ( 0       ,  1    )
    2489             : // [1]lop = ( lop_x   ,  lop_y)
    2490             : // [2]lop = ( sqrt(-1), -0    )
    2491             : // [3]lop = ( lop_x   , -lop_y)
    2492             : // [4]lop = (-0       , -1    )
    2493             : // [5]lop = (-lop_x   , -lop_y)
    2494             : // [6]lop = (-sqrt(-1),  0    )
    2495             : // [7]lop = (-lop_x   ,  lop_y)
    2496             : //
    2497             : // The x coordinate is either 0, sqrt(-1), lop_x, or their opposite.
    2498             : // The y coordinate is either 0,      -1 , lop_y, or their opposite.
    2499             : // The pattern for both is the same, except for a rotation of 2 (modulo 8)
    2500             : //
    2501             : // This helper function captures the pattern, and we can use it thus:
    2502             : //
    2503             : //    select_lop(x, lop_x, sqrtm1, cofactor);
    2504             : //    select_lop(y, lop_y, fe_one, cofactor + 2);
    2505             : //
    2506             : // This is faster than an actual scalar multiplication,
    2507             : // and requires less code than naive constant time look up.
    2508           0 : static void select_lop(fe out, const fe x, const fe k, u8 cofactor)
    2509             : {
    2510             :         fe tmp;
    2511           0 :         fe_0(out);
    2512           0 :         fe_ccopy(out, k  , (cofactor >> 1) & 1); // bit 1
    2513           0 :         fe_ccopy(out, x  , (cofactor >> 0) & 1); // bit 0
    2514           0 :         fe_neg  (tmp, out);
    2515           0 :         fe_ccopy(out, tmp, (cofactor >> 2) & 1); // bit 2
    2516           0 :         WIPE_BUFFER(tmp);
    2517           0 : }
    2518             : 
    2519             : // "Fast" dirty ephemeral key
    2520             : // We use this one by default.
    2521             : //
    2522             : // This version works by performing a regular scalar multiplication,
    2523             : // then add a low order point.  The scalar multiplication is done in
    2524             : // Edwards space for more speed (*2 compared to the "small" version).
    2525             : // The cost is a bigger binary for programs that don't also sign messages.
    2526           0 : void passgen_x25519_dirty_fast(u8 public_key[32], const u8 secret_key[32])
    2527             : {
    2528             :         // Compute clean scalar multiplication
    2529             :         u8 scalar[32];
    2530             :         ge pk;
    2531           0 :         passgen_eddsa_trim_scalar(scalar, secret_key);
    2532           0 :         ge_scalarmult_base(&pk, scalar);
    2533             : 
    2534             :         // Compute low order point
    2535             :         fe t1, t2;
    2536           0 :         select_lop(t1, lop_x, sqrtm1, secret_key[0]);
    2537           0 :         select_lop(t2, lop_y, fe_one, secret_key[0] + 2);
    2538             :         ge_precomp low_order_point;
    2539           0 :         fe_add(low_order_point.Yp, t2, t1);
    2540           0 :         fe_sub(low_order_point.Ym, t2, t1);
    2541           0 :         fe_mul(low_order_point.T2, t2, t1);
    2542           0 :         fe_mul(low_order_point.T2, low_order_point.T2, D2);
    2543             : 
    2544             :         // Add low order point to the public key
    2545           0 :         ge_madd(&pk, &pk, &low_order_point, t1, t2);
    2546             : 
    2547             :         // Convert to Montgomery u coordinate (we ignore the sign)
    2548           0 :         fe_add(t1, pk.Z, pk.Y);
    2549           0 :         fe_sub(t2, pk.Z, pk.Y);
    2550           0 :         fe_invert(t2, t2);
    2551           0 :         fe_mul(t1, t1, t2);
    2552             : 
    2553           0 :         fe_tobytes(public_key, t1);
    2554             : 
    2555           0 :         WIPE_BUFFER(t1);    WIPE_CTX(&pk);
    2556           0 :         WIPE_BUFFER(t2);    WIPE_CTX(&low_order_point);
    2557           0 :         WIPE_BUFFER(scalar);
    2558           0 : }
    2559             : 
    2560             : ///////////////////
    2561             : /// Elligator 2 ///
    2562             : ///////////////////
    2563             : static const fe A = {486662};
    2564             : 
    2565             : // Elligator direct map
    2566             : //
    2567             : // Computes the point corresponding to a representative, encoded in 32
    2568             : // bytes (little Endian).  Since positive representatives fits in 254
    2569             : // bits, The two most significant bits are ignored.
    2570             : //
    2571             : // From the paper:
    2572             : // w = -A / (fe(1) + non_square * r^2)
    2573             : // e = chi(w^3 + A*w^2 + w)
    2574             : // u = e*w - (fe(1)-e)*(A//2)
    2575             : // v = -e * sqrt(u^3 + A*u^2 + u)
    2576             : //
    2577             : // We ignore v because we don't need it for X25519 (the Montgomery
    2578             : // ladder only uses u).
    2579             : //
    2580             : // Note that e is either 0, 1 or -1
    2581             : // if e = 0    u = 0  and v = 0
    2582             : // if e = 1    u = w
    2583             : // if e = -1   u = -w - A = w * non_square * r^2
    2584             : //
    2585             : // Let r1 = non_square * r^2
    2586             : // Let r2 = 1 + r1
    2587             : // Note that r2 cannot be zero, -1/non_square is not a square.
    2588             : // We can (tediously) verify that:
    2589             : //   w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3
    2590             : // Therefore:
    2591             : //   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3))
    2592             : //   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1
    2593             : //   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6)
    2594             : //   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)  *     r2^6)
    2595             : //   chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) *  A * r2^3)
    2596             : // Corollary:
    2597             : //   e =  1 if (A^2*r1 - r2^2) *  A * r2^3) is a non-zero square
    2598             : //   e = -1 if (A^2*r1 - r2^2) *  A * r2^3) is not a square
    2599             : //   Note that w^3 + A*w^2 + w (and therefore e) can never be zero:
    2600             : //     w^3 + A*w^2 + w = w * (w^2 + A*w + 1)
    2601             : //     w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1)
    2602             : //     w^3 + A*w^2 + w = w * (w + A/2)^2        - A^2/4 + 1)
    2603             : //     which is zero only if:
    2604             : //       w = 0                   (impossible)
    2605             : //       (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square)
    2606             : //
    2607             : // Let isr   = invsqrt((A^2*r1 - r2^2) *  A * r2^3)
    2608             : //     isr   = sqrt(1        / ((A^2*r1 - r2^2) *  A * r2^3)) if e =  1
    2609             : //     isr   = sqrt(sqrt(-1) / ((A^2*r1 - r2^2) *  A * r2^3)) if e = -1
    2610             : //
    2611             : // if e = 1
    2612             : //   let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2
    2613             : //       u1 = w
    2614             : //       u1 = u
    2615             : //
    2616             : // if e = -1
    2617             : //   let ufactor = -non_square * sqrt(-1) * r^2
    2618             : //   let vfactor = sqrt(ufactor)
    2619             : //   let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor
    2620             : //       u2 = w * -1 * -non_square * r^2
    2621             : //       u2 = w * non_square * r^2
    2622             : //       u2 = u
    2623           0 : void passgen_elligator_map(u8 curve[32], const u8 hidden[32])
    2624             : {
    2625             :         fe r, u, t1, t2, t3;
    2626           0 :         fe_frombytes_mask(r, hidden, 2); // r is encoded in 254 bits.
    2627           0 :         fe_sq(r, r);
    2628           0 :         fe_add(t1, r, r);
    2629           0 :         fe_add(u, t1, fe_one);
    2630           0 :         fe_sq (t2, u);
    2631           0 :         fe_mul(t3, A2, t1);
    2632           0 :         fe_sub(t3, t3, t2);
    2633           0 :         fe_mul(t3, t3, A);
    2634           0 :         fe_mul(t1, t2, u);
    2635           0 :         fe_mul(t1, t3, t1);
    2636           0 :         int is_square = invsqrt(t1, t1);
    2637           0 :         fe_mul(u, r, ufactor);
    2638           0 :         fe_ccopy(u, fe_one, is_square);
    2639           0 :         fe_sq (t1, t1);
    2640           0 :         fe_mul(u, u, A);
    2641           0 :         fe_mul(u, u, t3);
    2642           0 :         fe_mul(u, u, t2);
    2643           0 :         fe_mul(u, u, t1);
    2644           0 :         fe_neg(u, u);
    2645           0 :         fe_tobytes(curve, u);
    2646             : 
    2647           0 :         WIPE_BUFFER(t1);  WIPE_BUFFER(r);
    2648           0 :         WIPE_BUFFER(t2);  WIPE_BUFFER(u);
    2649           0 :         WIPE_BUFFER(t3);
    2650           0 : }
    2651             : 
    2652             : // Elligator inverse map
    2653             : //
    2654             : // Computes the representative of a point, if possible.  If not, it does
    2655             : // nothing and returns -1.  Note that the success of the operation
    2656             : // depends only on the point (more precisely its u coordinate).  The
    2657             : // tweak parameter is used only upon success
    2658             : //
    2659             : // The tweak should be a random byte.  Beyond that, its contents are an
    2660             : // implementation detail. Currently, the tweak comprises:
    2661             : // - Bit  1  : sign of the v coordinate (0 if positive, 1 if negative)
    2662             : // - Bit  2-5: not used
    2663             : // - Bits 6-7: random padding
    2664             : //
    2665             : // From the paper:
    2666             : // Let sq = -non_square * u * (u+A)
    2667             : // if sq is not a square, or u = -A, there is no mapping
    2668             : // Assuming there is a mapping:
    2669             : //    if v is positive: r = sqrt(-u     / (non_square * (u+A)))
    2670             : //    if v is negative: r = sqrt(-(u+A) / (non_square * u    ))
    2671             : //
    2672             : // We compute isr = invsqrt(-non_square * u * (u+A))
    2673             : // if it wasn't a square, abort.
    2674             : // else, isr = sqrt(-1 / (non_square * u * (u+A))
    2675             : //
    2676             : // If v is positive, we return isr * u:
    2677             : //   isr * u = sqrt(-1 / (non_square * u * (u+A)) * u
    2678             : //   isr * u = sqrt(-u / (non_square * (u+A))
    2679             : //
    2680             : // If v is negative, we return isr * (u+A):
    2681             : //   isr * (u+A) = sqrt(-1     / (non_square * u * (u+A)) * (u+A)
    2682             : //   isr * (u+A) = sqrt(-(u+A) / (non_square * u)
    2683           0 : int passgen_elligator_rev(u8 hidden[32], const u8 public_key[32], u8 tweak)
    2684             : {
    2685             :         fe t1, t2, t3;
    2686           0 :         fe_frombytes(t1, public_key);    // t1 = u
    2687             : 
    2688           0 :         fe_add(t2, t1, A);               // t2 = u + A
    2689           0 :         fe_mul(t3, t1, t2);
    2690           0 :         fe_mul_small(t3, t3, -2);
    2691           0 :         int is_square = invsqrt(t3, t3); // t3 = sqrt(-1 / non_square * u * (u+A))
    2692           0 :         if (is_square) {
    2693             :                 // The only variable time bit.  This ultimately reveals how many
    2694             :                 // tries it took us to find a representable key.
    2695             :                 // This does not affect security as long as we try keys at random.
    2696             : 
    2697           0 :                 fe_ccopy    (t1, t2, tweak & 1); // multiply by u if v is positive,
    2698           0 :                 fe_mul      (t3, t1, t3);        // multiply by u+A otherwise
    2699           0 :                 fe_mul_small(t1, t3, 2);
    2700           0 :                 fe_neg      (t2, t3);
    2701           0 :                 fe_ccopy    (t3, t2, fe_isodd(t1));
    2702           0 :                 fe_tobytes(hidden, t3);
    2703             : 
    2704             :                 // Pad with two random bits
    2705           0 :                 hidden[31] |= tweak & 0xc0;
    2706             :         }
    2707             : 
    2708           0 :         WIPE_BUFFER(t1);
    2709           0 :         WIPE_BUFFER(t2);
    2710           0 :         WIPE_BUFFER(t3);
    2711           0 :         return is_square - 1;
    2712             : }
    2713             : 
    2714           0 : void passgen_elligator_key_pair(u8 hidden[32], u8 secret_key[32], u8 seed[32])
    2715             : {
    2716             :         u8 pk [32]; // public key
    2717             :         u8 buf[64]; // seed + representative
    2718           0 :         COPY(buf + 32, seed, 32);
    2719             :         do {
    2720           0 :                 passgen_chacha20_djb(buf, 0, 64, buf+32, zero, 0);
    2721           0 :                 passgen_x25519_dirty_fast(pk, buf); // or the "small" version
    2722           0 :         } while(passgen_elligator_rev(buf+32, pk, buf[32]));
    2723             :         // Note that the return value of passgen_elligator_rev() is
    2724             :         // independent from its tweak parameter.
    2725             :         // Therefore, buf[32] is not actually reused.  Either we loop one
    2726             :         // more time and buf[32] is used for the new seed, or we succeeded,
    2727             :         // and buf[32] becomes the tweak parameter.
    2728             : 
    2729           0 :         passgen_wipe(seed, 32);
    2730           0 :         COPY(hidden    , buf + 32, 32);
    2731           0 :         COPY(secret_key, buf     , 32);
    2732           0 :         WIPE_BUFFER(buf);
    2733           0 :         WIPE_BUFFER(pk);
    2734           0 : }
    2735             : 
    2736             : ///////////////////////
    2737             : /// Scalar division ///
    2738             : ///////////////////////
    2739             : 
    2740             : // Montgomery reduction.
    2741             : // Divides x by (2^256), and reduces the result modulo L
    2742             : //
    2743             : // Precondition:
    2744             : //   x < L * 2^256
    2745             : // Constants:
    2746             : //   r = 2^256                 (makes division by r trivial)
    2747             : //   k = (r * (1/r) - 1) // L  (1/r is computed modulo L   )
    2748             : // Algorithm:
    2749             : //   s = (x * k) % r
    2750             : //   t = x + s*L      (t is always a multiple of r)
    2751             : //   u = (t/r) % L    (u is always below 2*L, conditional subtraction is enough)
    2752           0 : static void redc(u32 u[8], u32 x[16])
    2753             : {
    2754             :         static const u32 k[8] = {
    2755             :                 0x12547e1b, 0xd2b51da3, 0xfdba84ff, 0xb1a206f2,
    2756             :                 0xffa36bea, 0x14e75438, 0x6fe91836, 0x9db6c6f2,
    2757             :         };
    2758             : 
    2759             :         // s = x * k (modulo 2^256)
    2760             :         // This is cheaper than the full multiplication.
    2761           0 :         u32 s[8] = {0};
    2762           0 :         FOR (i, 0, 8) {
    2763           0 :                 u64 carry = 0;
    2764           0 :                 FOR (j, 0, 8-i) {
    2765           0 :                         carry  += s[i+j] + (u64)x[i] * k[j];
    2766           0 :                         s[i+j]  = (u32)carry;
    2767           0 :                         carry >>= 32;
    2768             :                 }
    2769             :         }
    2770           0 :         u32 t[16] = {0};
    2771           0 :         multiply(t, s, L);
    2772             : 
    2773             :         // t = t + x
    2774           0 :         u64 carry = 0;
    2775           0 :         FOR (i, 0, 16) {
    2776           0 :                 carry  += (u64)t[i] + x[i];
    2777           0 :                 t[i]    = (u32)carry;
    2778           0 :                 carry >>= 32;
    2779             :         }
    2780             : 
    2781             :         // u = (t / 2^256) % L
    2782             :         // Note that t / 2^256 is always below 2*L,
    2783             :         // So a constant time conditional subtraction is enough
    2784           0 :         remove_l(u, t+8);
    2785             : 
    2786           0 :         WIPE_BUFFER(s);
    2787           0 :         WIPE_BUFFER(t);
    2788           0 : }
    2789             : 
    2790           0 : void passgen_x25519_inverse(u8 blind_salt [32], const u8 private_key[32],
    2791             :                            const u8 curve_point[32])
    2792             : {
    2793             :         static const  u8 Lm2[32] = { // L - 2
    2794             :                 0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
    2795             :                 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
    2796             :                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    2797             :                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
    2798             :         };
    2799             :         // 1 in Montgomery form
    2800           0 :         u32 m_inv [8] = {
    2801             :                 0x8d98951d, 0xd6ec3174, 0x737dcf70, 0xc6ef5bf4,
    2802             :                 0xfffffffe, 0xffffffff, 0xffffffff, 0x0fffffff,
    2803             :         };
    2804             : 
    2805             :         u8 scalar[32];
    2806           0 :         passgen_eddsa_trim_scalar(scalar, private_key);
    2807             : 
    2808             :         // Convert the scalar in Montgomery form
    2809             :         // m_scl = scalar * 2^256 (modulo L)
    2810             :         u32 m_scl[8];
    2811             :         {
    2812             :                 u32 tmp[16];
    2813           0 :                 ZERO(tmp, 8);
    2814           0 :                 load32_le_buf(tmp+8, scalar, 8);
    2815           0 :                 mod_l(scalar, tmp);
    2816           0 :                 load32_le_buf(m_scl, scalar, 8);
    2817           0 :                 WIPE_BUFFER(tmp); // Wipe ASAP to save stack space
    2818             :         }
    2819             : 
    2820             :         // Compute the inverse
    2821             :         u32 product[16];
    2822           0 :         for (int i = 252; i >= 0; i--) {
    2823           0 :                 ZERO(product, 16);
    2824           0 :                 multiply(product, m_inv, m_inv);
    2825           0 :                 redc(m_inv, product);
    2826           0 :                 if (scalar_bit(Lm2, i)) {
    2827           0 :                         ZERO(product, 16);
    2828           0 :                         multiply(product, m_inv, m_scl);
    2829           0 :                         redc(m_inv, product);
    2830             :                 }
    2831             :         }
    2832             :         // Convert the inverse *out* of Montgomery form
    2833             :         // scalar = m_inv / 2^256 (modulo L)
    2834           0 :         COPY(product, m_inv, 8);
    2835           0 :         ZERO(product + 8, 8);
    2836           0 :         redc(m_inv, product);
    2837           0 :         store32_le_buf(scalar, m_inv, 8); // the *inverse* of the scalar
    2838             : 
    2839             :         // Clear the cofactor of scalar:
    2840             :         //   cleared = scalar * (3*L + 1)      (modulo 8*L)
    2841             :         //   cleared = scalar + scalar * 3 * L (modulo 8*L)
    2842             :         // Note that (scalar * 3) is reduced modulo 8, so we only need the
    2843             :         // first byte.
    2844           0 :         add_xl(scalar, scalar[0] * 3);
    2845             : 
    2846             :         // Recall that 8*L < 2^256. However it is also very close to
    2847             :         // 2^255. If we spanned the ladder over 255 bits, random tests
    2848             :         // wouldn't catch the off-by-one error.
    2849           0 :         scalarmult(blind_salt, scalar, curve_point, 256);
    2850             : 
    2851           0 :         WIPE_BUFFER(scalar);   WIPE_BUFFER(m_scl);
    2852           0 :         WIPE_BUFFER(product);  WIPE_BUFFER(m_inv);
    2853           0 : }
    2854             : 
    2855             : ////////////////////////////////
    2856             : /// Authenticated encryption ///
    2857             : ////////////////////////////////
    2858           0 : static void lock_auth(u8 mac[16], const u8  auth_key[32],
    2859             :                       const u8 *ad         , size_t ad_size,
    2860             :                       const u8 *cipher_text, size_t text_size)
    2861             : {
    2862             :         u8 sizes[16]; // Not secret, not wiped
    2863           0 :         store64_le(sizes + 0, ad_size);
    2864           0 :         store64_le(sizes + 8, text_size);
    2865             :         passgen_poly1305_ctx poly_ctx;           // auto wiped...
    2866           0 :         passgen_poly1305_init  (&poly_ctx, auth_key);
    2867           0 :         passgen_poly1305_update(&poly_ctx, ad         , ad_size);
    2868           0 :         passgen_poly1305_update(&poly_ctx, zero       , gap(ad_size, 16));
    2869           0 :         passgen_poly1305_update(&poly_ctx, cipher_text, text_size);
    2870           0 :         passgen_poly1305_update(&poly_ctx, zero       , gap(text_size, 16));
    2871           0 :         passgen_poly1305_update(&poly_ctx, sizes      , 16);
    2872           0 :         passgen_poly1305_final (&poly_ctx, mac); // ...here
    2873           0 : }
    2874             : 
    2875           0 : void passgen_aead_init_x(passgen_aead_ctx *ctx,
    2876             :                         u8 const key[32], const u8 nonce[24])
    2877             : {
    2878           0 :         passgen_chacha20_h(ctx->key, key, nonce);
    2879           0 :         COPY(ctx->nonce, nonce + 16, 8);
    2880           0 :         ctx->counter = 0;
    2881           0 : }
    2882             : 
    2883           0 : void passgen_aead_init_djb(passgen_aead_ctx *ctx,
    2884             :                           const u8 key[32], const u8 nonce[8])
    2885             : {
    2886           0 :         COPY(ctx->key  , key  , 32);
    2887           0 :         COPY(ctx->nonce, nonce,  8);
    2888           0 :         ctx->counter = 0;
    2889           0 : }
    2890             : 
    2891           0 : void passgen_aead_init_ietf(passgen_aead_ctx *ctx,
    2892             :                            const u8 key[32], const u8 nonce[12])
    2893             : {
    2894           0 :         COPY(ctx->key  , key      , 32);
    2895           0 :         COPY(ctx->nonce, nonce + 4,  8);
    2896           0 :         ctx->counter = (u64)load32_le(nonce) << 32;
    2897           0 : }
    2898             : 
    2899           0 : void passgen_aead_write(passgen_aead_ctx *ctx, u8 *cipher_text, u8 mac[16],
    2900             :                        const u8 *ad,         size_t ad_size,
    2901             :                        const u8 *plain_text, size_t text_size)
    2902             : {
    2903             :         u8 auth_key[64]; // the last 32 bytes are used for rekeying.
    2904           0 :         passgen_chacha20_djb(auth_key, 0, 64, ctx->key, ctx->nonce, ctx->counter);
    2905           0 :         passgen_chacha20_djb(cipher_text, plain_text, text_size,
    2906           0 :                             ctx->key, ctx->nonce, ctx->counter + 1);
    2907           0 :         lock_auth(mac, auth_key, ad, ad_size, cipher_text, text_size);
    2908           0 :         COPY(ctx->key, auth_key + 32, 32);
    2909           0 :         WIPE_BUFFER(auth_key);
    2910           0 : }
    2911             : 
    2912           0 : int passgen_aead_read(passgen_aead_ctx *ctx, u8 *plain_text, const u8 mac[16],
    2913             :                      const u8 *ad,          size_t ad_size,
    2914             :                      const u8 *cipher_text, size_t text_size)
    2915             : {
    2916             :         u8 auth_key[64]; // the last 32 bytes are used for rekeying.
    2917             :         u8 real_mac[16];
    2918           0 :         passgen_chacha20_djb(auth_key, 0, 64, ctx->key, ctx->nonce, ctx->counter);
    2919           0 :         lock_auth(real_mac, auth_key, ad, ad_size, cipher_text, text_size);
    2920           0 :         int mismatch = passgen_verify16(mac, real_mac);
    2921           0 :         if (!mismatch) {
    2922           0 :                 passgen_chacha20_djb(plain_text, cipher_text, text_size,
    2923           0 :                                     ctx->key, ctx->nonce, ctx->counter + 1);
    2924           0 :                 COPY(ctx->key, auth_key + 32, 32);
    2925             :         }
    2926           0 :         WIPE_BUFFER(auth_key);
    2927           0 :         WIPE_BUFFER(real_mac);
    2928           0 :         return mismatch;
    2929             : }
    2930             : 
    2931           0 : void passgen_aead_lock(u8 *cipher_text, u8 mac[16], const u8 key[32],
    2932             :                       const u8  nonce[24], const u8 *ad, size_t ad_size,
    2933             :                       const u8 *plain_text, size_t text_size)
    2934             : {
    2935             :         passgen_aead_ctx ctx;
    2936           0 :         passgen_aead_init_x(&ctx, key, nonce);
    2937           0 :         passgen_aead_write(&ctx, cipher_text, mac, ad, ad_size,
    2938             :                           plain_text, text_size);
    2939           0 :         passgen_wipe(&ctx, sizeof(ctx));
    2940           0 : }
    2941             : 
    2942           0 : int passgen_aead_unlock(u8 *plain_text, const u8  mac[16], const u8 key[32],
    2943             :                        const u8 nonce[24], const u8 *ad, size_t ad_size,
    2944             :                        const u8 *cipher_text, size_t text_size)
    2945             : {
    2946             :         passgen_aead_ctx ctx;
    2947           0 :         passgen_aead_init_x(&ctx, key, nonce);
    2948           0 :         int mismatch = passgen_aead_read(&ctx, plain_text, mac, ad, ad_size,
    2949             :                                         cipher_text, text_size);
    2950           0 :         passgen_wipe(&ctx, sizeof(ctx));
    2951           0 :         return mismatch;
    2952             : }
    2953             : 
    2954             : #ifdef MONOCYPHER_CPP_NAMESPACE
    2955             : }
    2956             : #endif

Generated by: LCOV version 1.14